
TDK-thesis

Bálint Dominik Orosz

Automated validation of design and

architectural patterns on student

assignments with static code analysis

EÖTVÖS LORÁND UNIVERSITY

FACULTY OF INFORMATICS

DEPT. OF SOFTWARE TECHNOLOGY AND METHODOLOGY

Author:

Bálint Dominik Orosz
Computer Science MSc

II. grade

Supervisor:

Máté Cserép
Assistant Lecturer

Budapest, 2024

Contents

1 Introduction 1

1.1 Topic . 1

2 Background 3

2.1 Design principles . 3

2.1.1 Separation of concerns . 3

2.1.2 Encapsulation . 4

2.2 Architectures . 4

2.2.1 Monolithic architecture . 4

2.2.2 Model-View (MV) architecture 5

2.2.3 Model-View-ViewModel (MVVM) architecture 5

2.3 Structure of the related course . 6

2.3.1 Overview of student submissions 8

2.4 .NET Compiler Platform SDK . 9

2.5 Task Management System (TMS) . 10

2.6 Roslynator . 11

2.6.1 Roslyn(ator) analysis workflow 11

2.7 Need for a new workflow . 12

2.8 Related work . 13

2.9 Goals . 17

2.10 Research questions . 18

3 Methods 19

3.1 Proposed tool . 19

3.1.1 Requirements . 19

3.1.2 Configuration . 20

3.2 Architectural analysis workflow . 21

3.2.1 Data extraction phase . 23

CONTENTS

3.2.2 Diagnostic report phase . 24

3.3 Analysis model . 24

3.3.1 Knowledge-based approach . 24

3.3.2 TypeHolder . 25

3.3.3 TypeCollection . 26

3.3.4 Example for TypeCollection . 27

3.3.5 Equality comparers . 28

3.3.6 Architectural rulesets . 29

3.4 Abstract base analyzers . 30

3.4.1 BaseArchitecturalAnalyzer . 30

3.4.2 DependencyAnalyzer . 31

3.4.3 LayerAnalyzer . 32

3.5 Discovering dependencies . 32

3.6 Layer identification of types . 33

3.6.1 Proposed clustering workflow 33

3.6.2 Related knowledges . 37

3.6.3 Heuristics . 38

3.6.4 Example for layer identification 42

3.7 Defined rules . 43

3.8 Reported diagnostics . 44

3.8.1 ARCH1000 - Layer cannot be determined 44

3.8.2 ARCH1001 - Inconsistency during layer identification 45

3.8.3 ARCH1002 - Missing required layer 45

3.8.4 ARCH1003 - Invalid dependency between layers 46

3.8.5 ARCH1004 - Method call between unrelated layers 46

3.8.6 ARCH1005 - Events should be handled in appropriate layers . . . 46

3.8.7 ARCH1006 - Representation leak 47

3.8.8 ARCH1007 - Possible representation leak 47

3.8.9 ARCH1008 - Class depends on concretion 47

3.8.10 ARCH1009 - Don’t define event handlers in xaml.cs files 48

3.9 Proposed analyzers . 48

3.9.1 InconsistenciesDuringLayerIdentificationAnalyzer 49

3.9.2 LayerCannotBeDeterminedAnalyzer 49

3.9.3 MissingRequiredLayerAnalyzer 49

CONTENTS

3.9.4 InvalidDependencyBetweenLayersAnalyzer 49

3.9.5 MethodCallBetweenUnrelatedLayersAnalyzer 49

3.9.6 EventsShouldBeHandledInAppropriateLayersAnalyzer 50

3.9.7 LeakedRepresentationAnalyzer 50

3.9.8 ClassDependsOnConcretionAnalyzer 51

3.9.9 DontDefineEventHandlersInXamlCsFilesAnalyzer 51

3.10 Integration with evaluator system . 51

4 Results and validation 53

4.1 Evaluating the clustering method . 53

4.2 Evaluating student submissions . 55

4.2.1 Comparison . 58

4.3 Addressing the research questions . 59

5 Conclusion and discussion 62

5.1 Future work . 64

Acknowledgements 65

A Tool configuration 66

Bibliography 68

List of Figures 68

Abstract

Static code analysis can help to locate violations of common coding guidelines, most

regularly used design patterns and it can be used to discover information related to the

architectural structure of a software. It has also been shown that static analysis of stu-

dent programming submissions of university courses is a useful practice. In this pa-

per, a method is proposed for analyzing student submissions from past semesters from

an architectural perspective. (The submissions are related to the course of Event-driven

Applications at ELTE FI, and they were developed using either MV or MVVM architec-

ture.) A deterministic approach addressing the problem of clustering user-defined types

into architectural layers (in order to help recover the supposed architectural setup of a

submission) was introduced based on previously existed ideas extended with domain spe-

cific data related to the targeted course. Along with basic architectural rules, special rules

(e.g. for representation leak detection) were also defined corresponding to the rules of

the course which are expected to be followed by students during development. In order

to evaluate submissions using these rules, a prototype of an analyzer tool performing

such kind of an architectural analysis was implemented and integrated with an already

existing automated submission evaluator. Based on the results, it was concluded that the

architectural-specific static analysis of student submissions can provide valuable insights

during the evaluation of submissions, while also highlighting the most common flaws in

them and therefore supplying feedback for lecturers.

Keywords: static code analysis, C#, MV, MVVM, architecture violation, design pattern viola-

tion, student submission

Chapter 1

Introduction

1.1 Topic

The number of university students enrolling in computer science programmes is

rapidly increasing each year [1, 2]. With this number, the amount of student submis-

sions to university course tasks also escalates. This results in not only the multiplication

of lecturer workload related to the evaluation of these submissions, but also raises other

questions. Along with the previous problem, the amount of attention paid by a lecturer

to evaluate an assignment is questionable. Therefore, as a consequence of their increased

workload, lecturers might tend to pass over small, but important issues, so it is possible

that students may not get relevant feedback for their solutions and believe that their knowl-

edge in the topic is flawless, which in the future might present problems to enterprises and

thus to industry itself.

In order to present a solution to the previously described problems, universities have

started to apply static code analysis on student submissions in the hope of gaining valu-

able information about regular flaws [3]. It was also used to discover the most common

issues related to specific university courses. This method can help lecturers to identify

programming problems where most students fail and also determine which areas would

be most useful to focus on during practices.

While the applied static code analysis on student submissions in [4] has already proven

to be a valuable approach during evaluation, we argue that it is not satisfactory enough, as

it lacks to show support in the discovery of higher level design decisions (such as archi-

tectural design) and their violations. It is most fortunate that student submission evaluator

systems are already in use with built-in support for automated building and testing pro-

1

1. Introduction

cesses. It can be considered a foundation on which the development of higher level design

decision checkers and validators becomes possible, convenient and most reasonable.

Tools for the recovery of architectural layers of a software and for violation detection

have already been in existence, so the goal of this research was to examine how these

approaches can be applied and/or fine-tuned regarding the assignments of the university

course of Event-driven Applications at Eötvös Loránd University Faculty of Informatics

(ELTE FI). Therefore, the creation of a tool performing architectural analysis (and other

kinds of checks related to the course also) was in the perspective of the research, and its

validation with the evaluation of student submissions from past semesters.

In Chapter 2, related work of state-of-the-art architectural layer clustering and viola-

tion detection techniques are presented, along with the approaches aiming to detect archi-

tectural and design pattern violations in softwares. The chapter also introduces the related

course, its targeted assignments and possible static analyzer options, determines the goals

of research and poses the research questions as well. In Chapter 3, the proposed method-

ology in the form of an analyzer tool, its workflow and the clustering technique it uses are

presented, alongside with the defined rules of the analysis. In Chapter 4, the evaluation

of student submissions is explained in detail, while the performance and accuracy of the

proposed clustering method are examined too. Finally, in Chapter 5, the achivements of

the research are summarized, while future research opportunities are addressed.

2

Chapter 2

Background

In the following sections, the necessary theoretical and technical background of the

topic is introduced that is required to gain a deeper understanding of the initial problem

and later the proposed methods. This background includes the architectures that will serve

as bases for the architectural analysis of student submission; the relevant parts of the .NET

Compiler Platform SDK that is related to our cause; a description of the Task Management

System (TMS) [4]; and the brief background of student submissions to be evaluated. After

these, the related work will be presented, the goals of the research stated and the research

questions posed.

2.1 Design principles

First of all, before the introduction of specific architectures and their setup, the follow-

ing subsections describe some basic guiding design principles, namely that of separation

of concerns and encapsulation.

2.1.1 Separation of concerns

The principle of separation of concerns states that during development, parts of the

developed software should be separated according to the type of work these parts are sup-

posed to do [5]. The advantage of following this design rule is that it enables components

of a system to be loosely coupled, which shows its benefits when it comes to the testing

of components or the further development activities related to them.

3

2. Background

The default sample to this principle usually includes the separation of business logic

components from other components responsible for the presentation of data and user in-

teraction in general.

2.1.2 Encapsulation

According to Microsoft, classes should use encapsulation to isolate their inner state

from outside consumers of the class [5]. It is also required that this state of an object

should only be modifiable through well-defined methods from the outside. Also, they

describe how the presence of a mutable global state completely differs from the ideas of

encapsulation, as such a state might not be used reliably at different points of execution.

2.2 Architectures

The use of architectural patterns during software development have been essential

for a long time. Garlan illustrates software architecture as a transfer layer between the

requirements of a software and its implementing codebase [6]. It also determines a number

of characteristics of software architectures that influence the development lifecycle. Some

of which are understanding, reuse, construction, evolution, management, communication

and analysis. We aim to investigate the latter within the scope of student assignments

written in C# language using Model-View (MV) and Model-View-ViewModel (MVVM)

architectures, therefore we introduce the details of these two architectures in the following

subsections.

2.2.1 Monolithic architecture

Before we introduce MV and MVVM architectures, we must first mention monolithic

architecture, which is the most simple architecture. It does not separate functionalities,

like presentation, data handling and data persistence. This way, an application created

using this architecture will be limited in regard to scalability, and will provide a slower

development speed.

During the targeted course, students get acquainted with this kind of architecture at

first, but posing as an anti-pattern instead, drawing attention to its problems in order to

create necessity for the following architectures.

4

2. Background

2.2.2 Model-View (MV) architecture

The Model-View architecture is the first step we reach if we start out from a monolithic

architecture and take into account the principle of separation of concerns and apply it

in order to split up the monolithic architecture into two parts. The first part being the

Model layer, containing all the necessary objects which hold the business logic data using

encapsulation and manage that data. The other part is the View layer, which is responsible

for the presentation of model data and the handling of user interaction.

Model-View architecture is often viewed as the most simple architecture (after mono-

lithic architectures of course). It only contains one layer of separation of concerns, sepa-

rating the layer responsible for the implementation of business logic (Model layer) from

the responsibility of display (View layer).

The user communicates with the View layer, which calls the methods of the Model

layer. However, the Model layer is not dependent on the View layer, but provides events,

which can offer communication in the other direction.

The architecture might be extended with an optional Persistence layer, responsible for

persisting data. In this setup, the Model layer depends on the Persistence layer (not the

other way around), calls its methods through its public interface and uses its results.

User

View Model Persistence

Interactions

Presentation

Method calls

Events / return values

Method calls

Events / return values

Figure 2.1: Model-View (MV) architectural layers and the flow of data between them.

2.2.3 Model-View-ViewModel (MVVM) architecture

MV architecture serves as a base for Model-View-ViewModel architecture, however it

further separates responsibilities. It is a special type of Model-View-Controller (MVC) ar-

chitectures [7, 8]. Instead of the previously seen View layer, it introduces an intermediate

layer between the Model and View layers. This ViewModel layer will communicate with

the Model layer and preprocess the data it provides for presentation. (This communication

will happen through method calls, their return values and events.)

As a consequence of the introduction of the ViewModel layer, the View and Model

layers will not be directly connected from now on: all communication will happen through

the ViewModel layer. Similarly, the ViewModel layer will notify the View layer through

5

2. Background

events, if a data to be presented changes. The communication in the other direction will

be possible through data and command bindings.

Similarly to MV architecture, it may also be extended with a Persistence layer.

User

View ViewModel Model Persistence

Interactions

Presentation
Data Bindings,

Command Bindings

Change tracking Method calls

Events / return values

Method calls

Events / return values

Figure 2.2: Model-View-ViewModel (MVV) architectural layers and the flow of data
between them.

2.3 Structure of the related course

As it was already mentioned in Section 1.1, an intention of this paper is to examine

the possibilities of checking the architectural conformance of student submissions to MV

and MVVM architectures. These student solutions were submitted to assignments of the

university course of Event-driven applications at Eötvös Loránd University Faculty of

Informatics (ELTE FI). In this section, the course and its expectations towards students are

introduced for the purpose of giving a comprehensive insight before delving any deeper

into the theoretical background of the research.

As its name implies, the course is dedicated to teaching the methodologies of creat-

ing event-driven applications, mainly applications with a Graphical User Interface (GUI).

The course is centered around the C# language, and during development students get ac-

quainted with the Windows Forms (WinForms) [9] and Windows Presentation Foundation

(WPF) [10] frameworks.

The course also has a third topic, as students get presented how their previous code-

base can be adapted to mobile devices using the MAUI framework [11] (or previously

using the Xamarin Forms framework [12]). However, submissions related to these are not

analyzed, as we aim to examine MVVM architectural conformance through WPF sub-

missions. (Although, the methodology can be extended to support these other frameworks

too.)

During the course, the main objective is to teach students the best practices of specify-

ing and implementing desktop based GUI applications using WinForms and WPF frame-

works. C# is an effective and reasonable choice of language, as it supports the use of

events on a language level without the use of any external libraries [13]. Moreover, a high

6

2. Background

number of industrial applications are developed using these frameworks (especially WPF

[14]), so it is fair to say that the industrial demand supports these choices.

Although, at the end of the semester, students must take a 2-hour exam, besides that,

multiple assignments are handed out to them randomly from a list of possible assignments.

A student must implement the assignment first using WinForms, and then the same as-

signment using WPF. This way, students are not required to switch context between more

problems multiple times, so they can focus on a single task the whole semester. Besides

the previous fact, the intention behind this is that students might implement a more mature

solution to the same problem, while also realizing first-hand how different approaches and

frameworks can be used to solve a certain problem.

Assignments related to the course are usually simple games which can be played on

game boards or game board-like structures1. Some examples are sudoku, minesweeper,

Whac-A-Mole, snake, Tron, reversi, nine men’s morris, asteroids and acceleration games

in general (non-exhaustive list). Some of the assignments often require the use of file

operations such as saving and loading game states, therefore the existence of a Persistence

layer.

Generally, assignments must follow the rules of architectural design presented during

the course. Besides that, students are encouraged to separate C# projects in their solutions

according to the architectural representation of the assignment. For instance, placing all

the business logic related types in a separate project called ’AssignmentName’.Model,

all the display related types in a project called ’AssignmentName’.View and so on. An

advantage of this design is that by using separate compilation units (projects) for the

architectural layers, the compiler can detect potential circular dependencies, therefore

prohibit this kind of invalid dependencies between architectural layers. Furthermore, with

this structuring, each project might have its own set of dependencies, and projects will not

have to depend on unrelated dependencies (e.q. the Model layer will have no UI-related

dependencies). Besides these, the overall project structure becomes more transparent as it

gives a feeling of separated layers.

Although, use of the previous approach is not obligatory. Instead, students are warned

to separate the architectural layers on the level of namespaces at least, and place the

related types into the same namespace. However, the name of the namespace is still ought

to resemble the name of the corresponding architectural layer.

1Games that rely on a game board which can be projected onto a coordinate system.

7

2. Background

As the name of the course (Event-driven Applications) implies, another demand of

students is the use of events during the specification and implementation of the assign-

ments.

2.3.1 Overview of student submissions

The examined university course of Event-driven Applications is explained in details

in Section 2.3. This subsection aims to give a general overview of the manual evaluation

of student submissions as it can be considered a necessary prerequisite before defining

the violation detection rules in Section 3.7.

After examining and evaluating nearly a thousand student submissions from the past

two academic years, the following issues and common patterns were identified. Although,

there may be special use cases that allow the use of some scenarios/practices listed below,

during the related course these cases are considered to be indicators of design and/or

development flaws.

• When defining constructors (in order to achieve a manual form of constructor in-

jection of dependencies [15]), some students tend to define constructor parameters

with the concrete types and not the interfaces they implement.

• Unfortunately, students tend to violate the principle of encapsulation, and leak the

inner representation of objects by declaring public fields or generally by returning

references of private fields through which the representation may be changed.

• Placement of types belonging to a specific architectural layer into a namespace

which should contain types of another architectural layer.

• Types that do not belong to the Persistence layer using the System.IO namespace

(or any other namespace that could potentially indicate that the type belongs to the

Persistence layer).

• Placement of types into a hierarchically invalid folder or namespace structure (e.g.

placing all types into the same namespace or placing a type outside all namespaces).

• Enabling and/or using invalid layer dependencies. For instance, while not using sep-

arate projects for each architectural layer, it is possible for a type in the Persistence

layer to use a type from the Model layer to persist data (which is possible since

8

2. Background

these layers are not placed in different projects, therefore the two using each other

would not result in a circular dependency compiler error).

• In the ViewModel layer, re-initializing the whole of an ObservableCollection in-

stead of updating its elements. It is a performance problem as the whole collection

and its elements need to be rebuilt on the object level and on the user interface as

well, instead of using the already existing objects.

• Defining event handlers in files with xaml.cs extension. These files contain the class

definition for UI elements in a WPF application, and however it is easy to think of a

use case when this is valid, the assignments of the course are usually formed so that

they expect a solution using the binding features that the WPF framework provides

[16].

• Method calls bypassing the below layer in the hierarchy. For instance, a method

from a type in ViewModel layer calls a method located in Persistence layer. These

two are so to say separated by the Model layer.

• Handled events when the position where the event was raised and the location of

the event handler are located in layers that are not related.

• Spelling mistakes in the name of types and namespaces. Although, these issues are

not design or development flaws, they will later play an important role during the

layer clusterization method.

The previous list is obviously non-exhaustive (and it is not intended to be). Its main

purpose is to highlight the problematic cases from the viewpoint of a lecturer during

evaluating these kinds of submissions. However, the elements of this list will serve as

bases when it comes to defining the rules of analysis.

2.4 .NET Compiler Platform SDK

This section introduces the .NET Compiler platform SDK (also known as Roslyn

APIs) [17]. The usage of tools that support software development such as IDE features,

static code analysis and code generators becomes more and more important. The common

characteristic of these tools is that they need to access information that compilers generate.

Therefore, the main purpose of Roslyn APIs is to provide a way for other applications to

9

2. Background

reach the model which is used and updated by the compiler as it processes source code

[17].

The SDK contains several API layers, some examples are the compiler, diagnostic and

workspaces APIs [18].

The structure of the Compiler APIs resembles that of a normal compiler pipeline [18].

As the main objective is to offer an insight of the instantaneous state of the compiler to

consumers during compilation, parts of the compiler API are designed so that they can

be corresponded to a specific task of a normal compiler pipeline. As a compiler has a

parsing, declaration, binding and emitting phase, the Compiler API has a Syntax Tree

API, Symbol API, Binding and Flow Analysis API, and Emit API respectively. The task

of these compiler APIs is to expose the object model related to their compilation phase.

The object models provided by these APIs can serve as bases for custom code analyzers.

Diagnostic APIs are such parts of the Compiler APIs, which also make compilations

extensible in a sense [18]. Through them, custom analyzers (user-defined or even third-

party analyzers) might be used within the compilation process, along with compiler diag-

nostics.

Besides the previous APIs, the Workspace API is noteworthy as it provides types and

access related to essential C# features such as workspaces, solutions, projects and source

files. Upon these, code analysis and refactoring features can be implemented [18].

2.5 Task Management System (TMS)

In this section, an open-source Task Management System (TMS) [19] is described.

The project is developed at ELTE FI, and it is also used there for managing tasks of

several courses, including Event-driven applications too.

In the beginning, the main advantage of TMS was that it provided automatic build-

ing and testing opportunity for the uploaded submissions. However, for the purpose of

evaluating student submissions from previous semesters with static code analysis, Kaszab

implemented a workflow to TMS that supports the running of static analysis tools on

student submissions [4, 3].

After correct configuration, the static analysis workflow consists of two steps. In the

first step, the uploaded submission is transferred to a Docker container in which the run-

ning of a static code analyzer tool happens. (The workflow specifies a path where the

output file containing the results of the analyzer tool must be.) After that, these results

10

2. Background

are uploaded to another Docker container, where CodeChecker’s Report Converter Tool

converts these into JSON and HTML files that can be displayed on the UI afterwards [4].

Instructors are able to upload a Dockerfile or specify a Docker image that will serve

as the evaluator container (which should contain the static code analyzer of their choice)

and they can also upload a shell script (Bash or Windows Powershell) which contains the

instructions of the analysis process. This way, the workflow enables instructors to fully

configure the evaluator environment for each task of their courses.

However, a limitation of the evaluator workflow is noteworthy, that is, for

CodeChecker to be able to perform the report conversion, the output of the static code

analysis tool must be of a special format, which means that only CodeChecker-supported

analyzers can be displayed by TMS.

2.6 Roslynator

Roslynator [20] is a .NET analyzer tool developed as an open source project. It con-

tains a large number of Roslyn analyzers, code fixes and refactoring definitions. However,

it also offers a tool that is able to run the static analysis of a given project or a solu-

tion, while offering outstanding configurability. The reason that makes Roslynator so use-

ful is the fact that it can be extended with third-party Roslyn analyzers during runtime.

Therefore, its pure analyzing features can be leveraged.

The tool is already integrated with TMS, which offers a number of configurations

to analyze submissions with Roslynator, using Roslyn analyzers contained within the

Microsoft.CodeAnalysis.NetAnalyzers, SonarAnalyzer.CSharp and Roslynator.Analyzers

NuGet-packages. The report converter tool of CodeChecker also supports the xml output

of Roslynator [4].

2.6.1 Roslyn(ator) analysis workflow

The default workflow of Roslynator uses Roslyn APIs which means that the analysis

will happen separately for the compilation units, therefore for projects. However, when it

comes to solutions, projects in a solution are analyzed one-by-one, based on the depen-

dency graph of the analyzed projects. In this graph, vertices represent the projects of the

solution, and an edge (a,b) represents that project a depends on project b. After its cre-

ation, a topological sorting of the vertices of the graph can be traversed and the projects

11

2. Background

inside the solution can be analyzed in that order. It is crucial, considering that projects

need to be compiled in a specific order, and that order is determined by their dependen-

cies.

2.7 Need for a new workflow

Since Roslynator is already integrated with TMS and it provides support for running

any kind of Roslyn analyzers dynamically, it would be a reasonable requirement to create

default Roslyn analyzers that perform architectural checks on the given solution/project

and have Roslynator use these for architectural analysis. However, the analysis workflow

Roslynator uses is not appropriate for architectural analysis.

To understand the problem, first it is important to acknowledge the structure of the

student submissions which are subjects to analysis. It was described in Section 2.3, that

students are encouraged to place the implementation of architectural layers into separate

C# projects inside a solution, nevertheless it is not mandatory. Although, in normal cases

this would be the preferable practice, but as far as the analysis workflow is considered,

this only introduces problems.

Subsection 2.6.1 describes how the analysis of a solution will happen when Roslynator

is used. The problem with this approach is that for architectural checks to be applied, the

whole solution (all the relevant projects) must be visited in advance. Otherwise, it would

not be known by the time of the violation check what the architectural layers and even the

user-defined types are (as they were not visited before).

A solution could be the approach of merging all projects inside a solution into a sin-

gle project containing all the necessary user-defined types before analysis. In theory, this

looks like a solvable task if one is to think about the possibility of restructuring names-

paces and their types into folders inside a project instead of implementing them in separate

projects. However, this method clearly introduces a number of risks, for instance the pos-

sibility of the created project not being buildable. Instead of mitigating such risks, a much

cleaner and more transparent method will be proposed.

It would seem logical to report diagnostics after the analysis of all projects finished,

however this can only be done in analyzers during the built-in analysis process. (This is

a consequence of the Roslyn APIs that strive for using only immutable types to enhance

performance and enable thread-safety [21].)

12

2. Background

Based on the previous fact, the following idea could be the modification of the analysis

workflow of Roslynator, which is possible, but would end in the violation of basic pro-

gramming principles. A better solution is also possible but that would introduce a circular

dependency in the solution, which is a byproduct of the architectural setup of Roslynator.

Modifying this setup would also seem possible, although this should be avoided for sev-

eral reasons. First of all, Roslynator and its set of analyzers are actively maintained and

developed, therefore by using a fork of its repository for evaluation purposes in TMS,

gaining the latest updates would require maintanance and the introduced changes to the

analysis workflow might require the whole redesign of the process.

Since Roslynator is already supported by TMS and it was shown that introducing ar-

chitectural analysis to Roslynator should be avoided, it can be stated that for architectural

analysis purposes the introduction of a new tool and workflow is required. However, it will

be an expectation of the new tool to produce an output similar to that of Roslynator (possi-

bly a superset of that, extended with data collected during architectural analysis) in order

to help the integration process into TMS, as that output schema is already supported.

2.8 Related work

In order to be able to state validation results regarding a software’s architectural con-

formance, the validation methods ought to know the architectural setup of the software

components beforehand. That is, the input of the rules checking for architectural viola-

tions must contain some information about the clustering of software components into

pairwise disjoint sets, where these sets represent the layers of the examined architecture.

For this reason, clustering architectural layers can be considered the cornerstone

and first step towards architectural violation detection. For quite some time, different

approaches have been introduced that aim to solve this non-trivial problem. These ap-

proaches can be considered manual, automatic or semiautomatic based on the amount of

user interference needed [22]. However, detecting architectural violations has also been

done by other means.

In [23], Wongtanuwat and Senivongse used a set of regular expressions to extract

data from source code of iOS applications written in Objective-C. Their approach simply

sorted classes into Model, View and ViewModel architectural layers based on their names

and the inheritance information related to them. Although, if the end user of their tool was

not satisfied with the result of this clusterization, the tool provided a way of manually set-

13

2. Background

ting the architectural layer of a class. They also categorized what they thought from their

perspective as violations of the MVVM architecture and sorted these into three groups.

The first group had only one rule which required the presence of the three architectural

layers; the second group concentrated on the dataflow between layers and the individual

tasks of each layer such as the Model managing data or the View interacting with the

user; and the third group of rules focused on the relationship between layers and more

practically the dependencies between them.

In [24], Aljamea and Alkandari introduced their validation model for iOS applications

using MVC and MVVM architectures. Their violation detection covered two checks. At

first, they used regular expressions to validate whether a class in the Controller layer is

massive or not - the decisive condition was based on a usual convention. After that, their

method sorted types into layers, based on their base class. The base classes anticipating

architectural layers were determined from the special task-specific classes of the SDK.

Some architectural layers can be specified certainly with the previous approach, however

they argued that there is no definite way to assign types to the Model and ViewModel

layers, therefore they relied on additional user information regarding these layers. After

the layer of all types were either identified or set, they used regular expressions once more

to retrieve information about the dependencies between types. Finally, from the collected

data a dependency graph description was created with the DOT language to enable vi-

sual representation. The created graph emphasized invalid dependencies that violate the

checked architecture.

In [25], Hasan examined how the design pattern of an object-oriented Java application

could be recovered using data extracted from source code. They created a tool that outputs

the visual representation of the relationships between classes in order to provide an insight

of the application structure. From that, they argued that the level of coupling between

classes can be discovered which would help future development and design decisions.

At first, they grouped the relationships between objects and classes into two categories:

Operation-Operation interactions and Class-Class interactions. The former connects two

classes if in the first class there is an operation which either has a parameter with type of

the other class or has the return type of the other class. The latter connects two classes

if an instance of the first class is declared inside the other class or the two classes are

connected through inheritance.

In [26], Sarkar, Rama, and R. describe so-called "Layering principles" that are consid-

ered good practices, these are: back-call principle, skip-call principle and cyclic depen-

14

2. Background

dency principle. Back-call principle states that an upper layer should depend on a lower

layer, while the lower layer cannot depend on the upper layer. Skip-call principle describes

that an upper layer should only depend on the lower layer immediately below it. Cyclic

dependency principle states that violations of the back-call principle would result in cyclic

dependency relations between layers meaning that cycles would exist in the dependency

graph. Of course, this should be avoided as such a set of connections would make the

architecture monolithic. Although, they mentioned Architectural Description Languages

(ADLs) [8], they argued that these lack certain aspects of describing architectural layer-

ing principles, and instead they used a custom xml file describing architectural layers, the

modules they contain, the ordering of layers and also some minor violations that might

be useful to allow. In order to discover violations of the cyclic dependency principle,

they created a strongly connected component graph from the originally recovered module

dependency graph.

In [27], Cai, Iannuzzi, and Wong used design structure matrices (DSMs) [28] and de-

sign rule hierarchies (DRHs) [29] to examine the conformance of student submissions

to the expected design patterns of university assignments. Their method was to produce

DSMs created from the connection of types in the student submissions. These matrices

were then clustered into DRHs that represent a layered structure which provides the de-

pendency links between the sorted layers. These DRHs then could be used to analyze

the conformance of design patterns present in submissions to the expected results (from

which the same type of matrices were produced).

In [22], Scanniello et al. applied the Kleinberg algorithm [30] on industrial appli-

cations as well as on applications created by university students written in Java. Their

approach included the extraction of type dependencies from source code using static code

analysis regarding the inheritance, aggregation and association used between types. This

ultimately resulted in the creation of a graph in which vertices represent types and edges

represent the connection between those types. After that, the Kleinberg algorithm could

be used to assign each node an authority and hub value that correspond to the indegree

and outdegree of the nodes. When these values are calculated and normalized, nodes of

the graph can be sorted into categories. Types that are not used by other types belong

to the top layer and types that do not use other types belong to the bottom layer. (If a

type is not used by any other type and does not use any other type, then it does not have

any connection with other types, and therefore it is sorted into another layer.) All other

types belong to the middle layer. The advantage of this approach is that it may be applied

15

2. Background

multiple times for the middle layer as a subgraph of the previous graph if the architecture

describes more than three layers.

In [31], Constantinou, Kakarontzas, and Stamelos used an almost purely graph-based

approach to cluster types into architectural layers. At first, they used the Classycle

Analyzer tool to determine the dependencies between classes and to build a graph con-

sisting of strongly connected components. This graph then served as a base for the archi-

tectural layer partition of types - as it was turned into an acyclic directed graph of strongly

connected components. As this first partition was created, Chidamber and Kemerer met-

rics [32] were calculated for each layer. After that, boundaries of the previous layer parti-

tion were modified iteratively until the recalculated metrics seemed to improve.

Over the years, Dobrean and Dioşan performed a comprehensive study of the field, and

came up with several approaches regarding the clusterization of types and architectural

layer recovery. Their main subject of study was to examine the architectural conformance

of mobile applications which use MVC architecture.

In their first approach [33], while analyzing open source and private (mainly iOS)

mobile softwares, they have shown that it is possible to cluster the user-defined types to

architectural layers mainly based on data collected from the basic setup of the used SDK

and its design consequences. They represented layers as sets of types and applied several

heuristics that were derived from the usage of types in order to categorize them. After

this first deterministic approach, they applied machine learning techniques to the same

problem, to examine how it performs compared to the previous proposal [34]. However,

the performance of this second approach was not as satisfactory as expected, therefore

they fused these two techniques into a hybrid solution, which achieved higher performace

as it had properties of the first, more reliable deterministic approach, as well as adequate

flexibility provided by the second approach [35, 36].

It was also mentioned by Dobrean and Dioşan that detecting architectural violations in

a codebase could also be important for educational purposes as the result of the checking

process can call attention to errors regarding fundamental design principles [35]. In that

way, students might get first-hand experience and more guiding tools even during the

early stages of their studies.

16

2. Background

2.9 Goals

Section 2.8 introduces previous approaches to architectural layer clustering and design

conformance checking. However, it is arguable that the described type clustering methods

expect the codebase to show conformance to the examined architecture to some extent,

otherwise their results do not reveal any meaningful information about the failures of cat-

egorization. That is, when some issue happens during the layer identification of types, it

cannot be guaranteed that errors will be detected related to types with ambiguous archi-

tectural layers. Furthermore, those solutions do not wish to align these cases to the report

level, so the reason of a type being assigned to a specific (or perhaps more) architec-

tural layer(s) might not be detailed properly. Presumably, it is common during university

studies for students to make incorrect design decisions that introduce similar problems.

Therefore, a goal of this research is to provide a solution for these gaps.

This paper aims to examine how the type clustering method of Dobrean and Dioşan

can be adapted to our cause, which is the automatic checking of architectural design con-

formance of student submissions related to a specific university course. We wish to inves-

tigate that by switching and extending their original scope of research from the analysis of

mobile applications with MVC architecture to student submissions with MV and MVVM

architectures, while also extending the number of heuristics used during the clustering

method and modifying the basic clustering workflow. It is also an objective to define

more rules for violation detection that are more descriptive, while also presenting more

useful rules for our purposes.

The abstract objective of this paper is to examine how can a methodology be provided

for the checking of higher level (architectural and design) decisions, meanwhile it also

aims to describe methods for the assistance of university lecturers and students related to

course assignments.

The provided methodology targets to mimic the lecturer’s thought process of evalu-

ating a student submission. This means that the analysis results are expected to provide

as much information about the applied clusterization and the detected violations and their

root causes as possible.

As it was previously shown in this chapter, in order to check for the violations of

an architecture’s ruleset, knowledge about the user-defined types must be known prior to

that. Therefore, the application of a layer clustering method cannot be bypassed.

As it was indicated, tools for the recovery of architectural layers of a software have

17

2. Background

already been in existence. However, since the scope of this paper is narrowed down to

their applications in the course of university teaching and submission evaluation. This

paper aims to examine an alternative way of layer recognition and data extraction from

the codebase that provides lecturers and students the most insights regarding an inaccurate

submission.

2.10 Research questions

Based on Section 2.9, the following research questions were posed:

RQ1. How does layer clustering based on heuristics perform on the dataset consisting of

submissions from past semesters? How accurate is it?

RQ2. How error-prone is the proposed layer clustering method? What are the edge cases

of it? Under what circumstances is it most likely to fail?

RQ3. What are the most common issues of the analyzed submissions?

RQ4. How can the number of false positive cases of the reported diagnostics be mini-

mized?

RQ5. What conclusions can be drawn from the evaluation of student submissions from

past semesters?

RQ6. How can the revealed issues be useful from an educational methodology perspec-

tive?

18

Chapter 3

Methods

This chapter introduces the proposal for new methods. This includes the proposal for

the creation of a new tool that supports architectural analysis, describes its workflow;

provides a model that the proposed analysis uses; presents a clustering method of user-

defined types into architectural layers (and the heuristics it uses); defines the rules and

their corresponding diagnostics for analysis and describes the integration of the proposed

tool with an already existing evaluator system.

The proposed methods do not intend to provide methodology for the detection of all

the issues listed in subsection 2.3.1, but it is intended to provide the description of an

analysis tool and model that fits the goals of research (see Section 2.9).

3.1 Proposed tool

It was detailed in subsection 2.7, that as the consequence of the analysis workflow

provided by Roslyn analyzers (see subsection 2.6.1), a new tool is needed for the archi-

tectural analysis of student submission, that supports a custom workflow. This section

introduces the expectations of such a tool in the form of requirements.

3.1.1 Requirements

This subsection details the basic requirements defined before the specification of the

proposed tool. Some of these requirements come from natural expectations of the tool,

while others were formulated keeping in mind that the proposed tool is expected to be

integrated relatively easily into TMS (see subsection 2.5).

19

3. Methods

1. The tool must be able to perform architectural analysis on a given C# solution. In

order to do that, the tool must be able:

(a) to provide an alternative workflow for the analysis of C# solutions1; and

(b) to cluster user-defined types into architectural layers; and

(c) to detect architectural violations2.

2. The tool must be configurable in regard to:

(a) the examined architecture; and

(b) the auxiliary knowledges of layer identification3.

3. The tool must be able to output an xml file containing the results of the architectural

analysis.

(a) Its path must also be configurable.

(b) The schema used by the xml file must be a superset of the schema used by the

xml output generated by Roslynator.

3.1.2 Configuration

This subsection introduces the supposed model for the configuration of the proposed

tool. The configuration can be separated into two parts: options and arguments provided

for executing the tool and the any other remaining configuration through a json file.

For an execution of the tool, a required argument (path of the solution to be analyzed),

a required option (the architecture to check) and an optional option (path of the output

file) should be provided.

All the other configuration values should be used to configure the dependency ana-

lyzer, the layer identifier and its heuristics. The supposed configuration values are:

DependencyAnalysis: contains information to configure the retrieval and extraction of

type dependencies.

IgnoreTypesWithAttribute: list of attributes. Types marked with any of these at-

tributes should be excluded from the analysis.
1That is different from the default usage of C# analyzers.
2From the extracted knowledge of the codebase and the result of layer clustering.
3Typical base types, attributes, referenced namespaces, etc.

20

3. Methods

LayerIdentification: contains information to configure the clusterization of user-defined

types into architectural layers.

TypicalBaseTypes: map that assigns each architectural layer a list of type names.

User-defined types inheriting from these types should be assumed as a part of

the corresponding architectural layer.

TypicalReferencedNamespaces: map that assigns each architectural layer a list

of namespace names. User-defined types referencing types from these names-

paces should be assumed as a part of the corresponding architectural layer.

TypicalAttributes: map that assigns each architectural layer a list of type names

(these types inherit from System.Attribute). User-defined types marked with

these attributes should be assumed as a part of the corresponding architectural

layer.

All items regarding type and namespace names in the configuration should be fully

qualified names.

Appendix A contains a sample configuration for the tool.

3.2 Architectural analysis workflow

As it was shown in subsection 2.6.1, the analysis workflow provided by Microsoft

(and therefore used by Roslynator too) lacks certain aspects necessary for our cause. It

was also described how Roslynator traverses and analyzes projects in a C# solution by

visiting projects in a topological order of the dependency graph of projects. It is important,

as the architectural analysis workflow will also apply this particular feature.

As it was described previously, the main problem of the Roslynator workflow (and

Roslyn analyzers in general) is that they do not make it possible to analyze a solution or

its projects multiple times during the same analysis process. The reason this is essential

for architectural analysis is that architectural violation checks can only be examined after

all projects are processed; and if not provided, the possibility of reporting diagnostics

becomes impossible.

Therefore, according to our necessities, we will adjust the analysis workflow by split-

ting it into two parts. The goal of the first part is to gather all the information necessary

for architectural analysis and (mainly from that data) build the analysis model. After this

21

3. Methods

is done, in the second part, violation checks can be evaluated and then diagnostics can be

reported. These parts will be called phases from now on, the former will be referred to as

data extraction phase and the latter as diagnostic report phase. The structure and steps of

this setup is shown on Figure 3.1.

The default execution of analysis is left unchanged, as the projects in the analyzed

solution will be analyzed in a topological order computed from the dependency graph

of projects just as before. However, after this first turn of analysis is finished, a main

controller can switch between the two analysis phases and execute the default analysis

process for a second time. The crucial point of this approach is that the analyzers from

the first run must be reused since these objects collected all the necessary data for the

diagnostic report phase. The ’switch’ object can easily be represented as an instance of a

configuration class and then be injected into each analyzer. With the use of such configu-

ration, the initialization of analyzers (that gets executed during compilation) can contain

a decision whether to register data extraction actions or diagnostic report actions into the

main AnalysisContext.

Although, this approach can solve the problems introduced by the demand for archi-

tectural analysis, an implementation of the proposed analyzers could not be used in IDEs

that collect diagnostics during compilation like Visual Studio, as these tools depend on

the original analysis workflow.

22

3. Methods

Data extraction phase

Analyze project #1

Identify user-defined types

Identify dependencies of these types

Register knowledges into TypeCollection

...

Analyze project #n

Identify user-defined types

Identify dependencies of these types

Register knowledges into TypeCollection

Switch architectural analysis phase

Diagnostic report phase

Identify architectural layer of types

Analyze project #1

Perform violation check of current analyzer

Report diagnostics

Diagnostics found
...

Analyze project #n

Perform violation check of current analyzer

Report diagnostics

Diagnostics found

Figure 3.1: Activity diagram of the architectural analysis workflow from the perspective
of a single analyzer. Actions are grouped into data extraction and diagnostic report

phases.

3.2.1 Data extraction phase

During the data extraction phase, analyzers must collect all the necessary information

from which they will be able to perform their violation checks later. The main goal of

this phase from the perspective of the analysis workflow is to discover all user-defined

types in all analyzed projects, and to determine the dependencies of these types, while

also collecting information about the kind of these connections. For these purposes, two

abstract analyzers will be introduced in subsections 3.4.1 and 3.4.2.

23

3. Methods

3.2.2 Diagnostic report phase

The primary task of the diagnostic report phase is to report diagnostics related to

the violation checks of the current analyzer. However, the most used LayerAnalyzer (see

subsection 3.4.3) firstly performs the clusterization of user-defined types based on the

collected data prior to the violation checks.

Roslyn analyzers can only report those diagnostics that has their locations inside the

currently analyzed project [37]. However, during architectural analysis, when projects are

analyzed for a second time, all projects get analyzed and can try to report all diagnos-

tics, so it is important to have a method which filters for the valid reported diagnostics.

Therefore, the BaseArchitecturalAnalyzer class introduced in subsecion 3.4.1 should also

provide a protected method that its derived classes can use to a report diagnostic.

3.3 Analysis model

It was realized that a special model for the whole process of architectural analysis is

needed. The suggested structure should contain all the necessary data, but also it is ought

to be specified keeping in mind that it should contain support for extensibility during

future use. In this section, a model is specified that would enable to store information

hierarchically in regard to user-defined types, while also being extendable for any kind of

metadata extracted from the codebase or collected during the analysis workflow.

3.3.1 Knowledge-based approach

To ensure that the model should be extendable, a knowledge-based approach is used.

An IKnowledge interface is introduced which is an empty interface that can represent

some kind of a knowledge in regard to the analysis model later to be introduced (see

Figure 3.2).

Another interface named IKnowledgeHolder is specified which is able to contain

knowledges4. Besides that, an abstract class is introduced that can serve as a base for

types that want to implement the IKnowledgeHolder interface. It contains methods for

storing, removing and retrieving knowledge from their maintained collection. As it was

mentioned previously, these methods should also enable concurrent usage to their users.

4The term knowledges is used to describe knowledge items registered to IKnowledgeHolders.

24

3. Methods

IKnowledge

IKnowledgeHolder

Knowledges() : HashSet<IKnowledge>
properties

KnowledgeHolderBase

AddKnowledge(IKnowledge) : Void
GetKnowledges<T>() : IEnumerable<T> { T : IKnowledge }
RemoveKnowledge(IKnowledge)

Knowledges() : HashSet<IKnowledge>
properties

Figure 3.2: Class diagram of knowledge-related interfaces and KnowledgeHolderBase
abstract class.

At this point, as the possibility of extending default analysis information gained from

Roslyn APIs with any kind of knowledge is guaranteed, models that make up the core

analysis model can be defined.

3.3.2 TypeHolder

At first, we start with TypeHolder. It inherits from KnowledgeHolderBase, and has

a single property of type ITypeSymbol which is a product of the Roslyn semantic model

and its corresponding API. Objects of TypeHolder type will be used to store and wrap all

user-defined types during analysis.

As a descendant of KnowledgeHolderBase, a TypeHolder instance is able to contain

knowledge about the type it holds, and that way, the support for extendibility is assured.

KnowledgeHolderBase

TypeHolder

TypeHolder(ITypeSymbol)

TypeSymbol() : ITypeSymbol
properties

Figure 3.3: Class diagram of TypeHolder class.

25

3. Methods

3.3.3 TypeCollection

The other model class introduced is TypeCollection (Figure 3.4). A TypeCollection

object is used to represent a collection of types that belong together in regard to a common

namespace.

The structure of the class is recursive, an instance of it holds reference to its par-

ent TypeCollection and also references to all of its subcollections. This means that

TypeCollection objects form a tree that represent the hierarchical structure of namespaces

and the types contained within them.

However, it is important to mention that an object of TypeCollection is aimed to

represent only the last subnamespace of the full namespace of its contained types. Another

key feature is that the root of a TypeCollection tree represents the global namespace of

the solution - types declared outside all namespaces will belong there.

Its inheritance from KnowledgeHolderBase is suggested, in order to enable con-

sumers the opportunity of registering knowledges specifically belonging to a collection

of types or a namespace.

Besides all its other features, the class must provide functions to query whether a

type had already been added to the collection (which work for either a TypeHolder or

an ITypeSymbol). Moreover, the addition of types must also be guaranteed, in the form

of methods that propagate down the tree to find the most appropriate namespace that the

type to be added belongs to. The supposed class contains helper properties also that are

defined to help its usage for consumers.

As far as the creation of TypeHolder objects contained within TypeCollections are

concerned, it should be provided through the addition method - but not limited to it,

leaving the door open for future scenarios.

The importance of using tools supporting concurrent execution must be emphasized

once more; an implementation of this class must also take actions to provide thread-safety

in order to fit into the analysis workflow.

26

3. Methods

KnowledgeHolderBase

TypeCollection

TypeCollection(TypeCollection? parentCollection, String? namespace)
ContainsType(TypeHolder) : Boolean
ContainsType(ITypeSymbol) : Boolean
AddType(ITypeSymbol) : TypeHolder
AddType(ITypeSymbol, String[]) : TypeHolder
GetAllTypes() : HashSet<TypeHolder>

Namespace() : String?
Types() : HashSet<TypeHolder>

properties

ParentCollection() : TypeCollection?
SubCollections() : List<TypeCollection>

navigation properties

FullNamespace() : String
AllTypes() : HashSet<TypeHolder>
AllTypeCollections() : IEnumerable<TypeCollection>

helper properties

Figure 3.4: Class diagram of TypeCollection class.

3.3.4 Example for TypeCollection

This subsection aims to provide an example for the TypeCollection that is ought to be

built during the analysis of a solution. The UML class diagram of the supposed solution

is shown on Figure 3.5. During the analysis of this solution, the built TypeCollection tree

must be equivalent to what is shown on Figure 3.6. It can be seen how TypeCollection

and TypeHolder objects are used to build a tree which represents the hierarchical struc-

ture of namespaces, while wrapping the initial underlying analysis data. For the sake of

simplicity and understandability, most properties (Knowledges, ParentCollection, etc.)

of the objects were omitted.

Sudoku

Model

ViewModel

ValueConvertersView

App

IGameModel

GameModel

ViewModelBase

MainViewModel

CustomValueConverterMainWindow

Figure 3.5: Class diagram of an imaginary/abstract Sudoku game.

27

3. Methods

TypeHolder

TypeSymbol IGameModel

TypeHolder

TypeSymbol GameModel

TypeHolder

TypeSymbol CustomValueConverter

TypeHolder

TypeSymbol ViewModelBase

TypeHolder

TypeSymbol MainViewModel

TypeHolder

TypeSymbol MainWindow

TypeHolder

TypeSymbol App

TypeCollection

NamespaceName null

Types

SubCollections

TypeCollection

NamespaceName Sudoku

Types

SubCollections

TypeCollection

NamespaceName Model

Types

SubCollections

TypeCollection

NamespaceName ViewModel

Types

SubCollections

TypeCollection

NamespaceName View

Types

SubCollections

TypeCollection

NamespaceName ValueConverters

Types

SubCollections

Figure 3.6: Simplified representation of the built tree made from TypeCollection and
TypeHolder objects. Instances of TypeCollection are colored blue, while instances of

TypeHolder are colored yellow.

3.3.5 Equality comparers

In C#, the IEqualityComparer<T> interface provides methods for the comparison

of objects [38]. Its generic type parameter corresponds to a type over which methods

must be implemented regarding the comparison of instances of that type. These meth-

ods are Equals and GetHashCode. The main difference between declaring these two

methods on the class level (that could be invoked through instances) and implementing

these methods in a separate class, is that by the latter option multiple implementations

regarding object equality can be provided. It can be advantageous as implementations of

IEqualityComparer may be used alongside with special IEnumerable implementations,

notably with Dictionary (for comparing keys) and with HashSet (for comparing values).

In the proposed analysis model, two equality comparers are implemented:

TypeSymbolNameComparer and TypeHolderComparer. The former is able to com-

pare object instances derived from ITypeSymbol, the latter is similar but with

28

3. Methods

TypeHolder instances. The implementation of both classes is relatively simple,

TypeSymbolNameComparer compares types based on their fully qualified name extended

with the name of the containing assembly (through the use of an extension method de-

fined over ITypeSymbol), while the methods of TypeHolderComparer call an instance of

TypeSymbolNameComparer using the TypeSymbol property of TypeHolder parameters.

We suggest implementing both classes using singleton design pattern.

3.3.6 Architectural rulesets

Since the rules of the examined architectures should be present during analysis,

methodology should provide a way of formalising the rules of architectures that can later

be used to be matched against. For this reason, an interface named IArchitecturalRuleset

is introduced (see Figure 3.7). It suggests that architectures should have a way of describ-

ing their set of required and optional layers (and with that, the set of all their possible

layers) and the dependency rules between these layers. They should also have a method

for checking whether a connection between two given layers violate the rules of the ex-

amined architecture.

IArchitecturalRulesets

DependencyViolatesRules(LayerType, LayerType) : Boolean

Architecture() : Architecture
RequiredLayerTypes() : List<LayerType>
OptionalLayerTypes() : List<LayerType>
PossibleLayerTypes() : List<LayerType>
DependencyRules() : List<DependencyRule>

properties

MVRuleset MVVMRuleset

Architecture

MV,
MVVM

LayerType

CannotBeDetermined,
Persistence,
Model,
ViewModel,
View,
App,
Test

DependencyRule

Layer() : LayerType
DependentLayer() : LayerType

properties

Figure 3.7: Class diagram of the architectural rulesets.

Based on these, MV architecture can be modelled as an architectural ruleset, that

requires the presence of the App, View, Model, but optionally can contain Persistence

and Test layers. Its dependency rules should contain the basic architectural rules, rules

regarding the testing layer (it may use any other layer), and reflexive rules also (so that

invalid dependencies may not arise from a layer depending on itself). Therefore, between

these layers, the allowed cases are the following:

• App can depend on App, View, Model and Persistence layers,

• View can depend on View, Model layers,

29

3. Methods

• Model can depend on Model, Persistence layers,

• Persistence can depend on Persistence layer,

• Test can depend on Test, App, View, Model and Persistence layers.

The formalization of MVVM architecture can be done similarly, with requiring the

presence of the ViewModel layer, letting it depend on itself and the Model layer, and

making View depend on it instead of the Model layer. The App and Test layers may

depend on ViewModel of course.

3.4 Abstract base analyzers

3.4.1 BaseArchitecturalAnalyzer

In order to set ground for the analysis setup, an abstract analyzer base class is intro-

duced. It resembles the separation of the two phases, and has a way of switching between

them. This class intends to be a base class for all analyzers performing checks related to

architectural structure.

BaseArchitecturalAnalyzer inherits from DiagnosticAnalyzer which is an ab-

stract analyzer provided by Roslyn APIs. Its main features are the property of

SupportedDiagnostics containing all diagnostics that can be reported from the current

analyzer, and the Initialize method which is used to setup the analyzer by registering

actions into its AnalysisContext parameter. Its class diagram is shown on Figure 3.8.

Besides these, BaseArchitecturalAnalyzer gets an instance of

ArchitecturalAnalysisOptions (later to be introduced) in its constructor, that can

be used to configure its behavior from the outside. From the perspective of this base

analyzer, the important point is that this options class has a property of enumeration type

ArchitecturalAnalysisPhase that represents the two previously described phases.

Furthermore, the class needs to provide two virtual methods with no default imple-

mentation. These methods correspond to the two phases of data extraction and diagnostic

report. The logic behind this structure is that if the analysis is in the data extraction phase,

the Initialize method will call the InitializeContext method with the given context, oth-

erwise the ReportDiagnostics method will be registered into the context as a compilation

end action [39], so it will run at the end of the analysis. In either cases, according to the

best practices, the Initialize method invokes EnableConcurrentExecution on the analy-

30

3. Methods

sis context for enhanced performance. As a consequence of this, all model classes and

analyzers are expected to function well in a multithread environment.

It is also notable, that BaseArchitecturalAnalyzer class has a static property of type

TypeCollection. This instance serves as the top level TypeCollection and represents the

main analysis model that all analyzers should work on.

ArchitecturalAnalysisPhase

DataExtraction,
DiagnosticReport

ArchitecturalAnalysisOptions

DiagnosticAnalyzer

Initialize(AnalysisContext) : Void { abstract }
Equals(Object?) : Boolean { sealed }
GetHashCode() : Int32 { sealed }
ToString() : String { sealed }

SupportedDiagnostics() : ImmutableArray<DiagnosticDescriptor> { abstract }
properties

BaseArchitecturalAnalyzer

_options : ArchitecturalAnalysisOptions { readOnly }

BaseArchitecturalAnalyzer(ArchitecturalAnalysisOptions)
Initialize(AnalysisContext) : Void { override, sealed }
InitializeContext(AnalysisContext) : Void { virtual }
ReportDiagnostics(CompilationAnalysisContext) : Void { virtual }
ReportDiagnostic(...) : Void

TypeCollection() : TypeCollection { getter }
properties

Figure 3.8: Class diagram of BaseArchitecturalAnalyzer abstract class and related types.

3.4.2 DependencyAnalyzer

DependencyAnalyzer is another abstract analyzer class which concrete future ana-

lyzers can inherit from. It is a derived class of BaseArchitecturalAnalyzer that overrides

the latter’s InitializeContext method. It registers a method into the AnalysisContext that

can process SyntaxNodes - this method can and will be executed upon analyzing type

definitions, such as class, struct, inter f ace, record struct, record in general or an enum.

Upon seeing a new type that has not been added to the main TypeCollection of

BaseArchitecturalAnalyzer before, the type is added to it. After this, the other main fea-

ture of DependencyAnalyzer analyzer must be implemented which is the task of collect-

ing the dependency types of the currently found type. This process is explained in detail

in Section 3.5.

31

3. Methods

3.4.3 LayerAnalyzer

The last abstract analyzer specified is LayerAnalyzer which derives from

DependencyAnalyzer. While DependencyAnalyzer may be seen as the coordinator of

data extraction phase, LayerAnalyzer might be its counterpart in diagnostic report phase.

It expects an ILayerIdenti f ier implementation in its constructor (which is responsible

for the clusterization of types into architectural layers; see Section 3.6), and provides a

LayerIdenti f icationResult property that will contain the results of clusterization.

While DependencyAnalyzer has overridden InitializeContext of

BaseArchitecturalAnalyzer, the supposed LayerAnalyzer class should override

ReportDiagnostics with including a call to its ILayerIdenti f ier. More on the layer

identification process is described in Section 3.6.

3.5 Discovering dependencies

For the detection of dependencies of a type, ClassRe f erencesSyntaxWalker is intro-

duced. It is derived from CSharpSyntaxWalker provided by Microso f t [40]. It is capable

of visiting the syntax tree using depth-first search. Its main feature is that it provides vir-

tual methods for visiting the different types of syntax nodes in the abstract syntax tree

(AST), for instace attributes, field, property and variable declarations, object creation ex-

pressions, etc. Basically, it provides methods for descendants of SyntaxNode.

For the implementation of such a class, we recommend overriding the methods

for most (if not each) syntax node types that its base class provides, and through the

SemanticModel corresponding to the visited tree, each method could get the type infor-

mation of the syntax nodes and the retrieved types can be viewed as dependencies of the

current type.

In order to be more specific in regard to dependencies, we suppose the use of

a categorisation. We introduce DependencyKnowledge to represent the dependency

of a type, which can be registered into a TypeHolder, as it is an implementation

of IKnowledgeHolder. A DependencyKnowledge instance should contain the two

ITypeSymbols involved in the connection, and a collection of locations where the de-

pendency was discovered. For such a location, the introduction of a DependencyLocation

struct becomes reasonable, which can contain the Location (provided by Roslyn APIs)

and the source of the dependency which corresponds to the type of the syntax node where

32

3. Methods

the dependency was found. For the latter, we suppose the use of a new enumeration type

(DependencySource) as the built-in type that would be appropriate (SyntaxKind enumer-

ation type) uses an incremental correspondence to its values and ushort numbers, but it

would be more advantageous for our case if the corresponding numbers of enum values

would be the powers of two, as they could be combined later.

3.6 Layer identification of types

In this section, a clustering method for user-defined types into architectural layers is

presented. As a part of that, its clustering workflow is explained in detail, as well as the

heuristics it uses, alongside with the special rules applied in order to gain higher accuracy.

3.6.1 Proposed clustering workflow

The sole purpose of this clusterization method is to get a partition of the set of user-

defined types, so that the subsets representing each architectural layer are disjoint sets

pairwise. The proposed method is a deterministic approach of identifying layers, which

means that it is expected to produce the same output each time for the same input data.

Before defining the process itself, the possible architectural layer values are de-

fined in the form of an enumeration type (LayerType). It contains the special value of

CannotBeDetermined which is used to represent the failure of the clustering method to

sort the type into any architectural layer. (This failure is not meant to represent the failure

of the layer identification method, but the lack of information about the type.)

As the first part of layer identification, all heuristics (see subsection 3.6.3)

are run for each type in the main TypeCollection. These heuristics register

PotentialLayerKnowledges to TypeHolders (and in special cases to TypeCollections

also - see subsection 3.6.3). These are considered the primary layer knowledges as these

are direct consequences of the data extracted from the analyzed codebase.

The identification process maintains a map of types and their corresponding output

layers. At first, all types are assigned the layer type of CannotBeDetermined. Layer types

are also assigned to namespaces (and therefore TypeCollections). After initialization, the

main TypeCollection is traversed and all namespaces are assigned a layer type. The as-

signed layer of a namespace is determined by whether the related TypeCollection has a

registered NameBasedPotentialLayerKnowledge. If it has, the namespace is assigned the

33

3. Methods

layer contained in the knowledge, otherwise the namespace is assigned the layer of its

closest ancestor (whose layer could be determined).

After initialization, as results of the heuristics are present, these primary knowledges

need to be evaluated (see Figure 3.10). All types in the TypeCollection and their regis-

tered BasicPotentialLayerKnowledges need to be examined. If there is none of that kind,

the layer of the type cannot be determined. If there is exactly one knowledge, its layer

is assigned to the type. However, if there were multiple potential layer knowledges regis-

tered by the heuristics, it must be checked if all these registered layers are the same. If that

is the case, the type has a specific layer to be assigned, otherwise a conflict of heuristic

rules is discovered. (This clustering method aims to provide information about such con-

flicts and inconsistencies, but at this point, this particular situation is not stored.) At this

point, the algorithm checks whether there is a layer with the most occurrences in the set

of registered layers, and if there is one, that layer is assigned, otherwise layer information

about the examined type cannot be certainly determined.

After the previous section, some types are assigned a specific layer, while the layer

of other types could not be determined so far. In the next step, information about the

connection of the layer of types will be used. At first, we suppose the creation of a graph,

which should have edges containing types. An edge of this graph (a,b) should represent

that the layer of type a determines the layer of type b. The nodes of the graph should be a

subset of all user-defined types that are present on either side of a connection represented

by a ConnectedPotentialLayerKnowledge.

After the previously described graph is present, layer information between types can

be distributed along its edges. However, assigning layers should be done with the types (as

nodes) in topological order (to prevent a type not having a layer when their layer should

determine the layer of other types).

Since it is possible that this type graph might contain cycles, these cycles must also be

handled. We suppose a modification of the Depth-First Search (DFS) algorithm that de-

termines a topological order [41] so that when a cycle is detected, the algorithm proceeds

to calculate the topological order, while the cycles are collected separately for future use.

It is crucial that as nodes within the cycles can also be part of the topological order, the

previously mentioned distribution of layers along the edges needs to be done in the cycles

first (otherwise layer information could be lost).

Edges in the graph that are consequences of knowledges determined by

Inter f aceHeuristic are ignored in case of types belonging to the Test layer during the

34

3. Methods

traversal of nodes as they usually represent mock implementations of interfaces (and most

reasonably they should not be considered as belonging to the same layer).

After these steps, it is true once more, that the layer of some types are determined,

while others could not be determined. Although, NameBasedPotentialLayerKnowledges

can be applied to specify the layer of more types. For types that do not have a specific layer

at that time, a layer resembling their name will be assigned (if one exists - see 3.6.3). If

there are any types without a layer after the previous step, the layer of their containing

namespace will be assigned to them.

Although, the previous process might seem rational, there are special rules that may

need to be applied in order to avoid the miscategorization of types. One such rule is that

if a type references the System.IO namespace, but based on its name or the name of

its namespace, it could be assigned to another layer (besides Persistence), it should be

assumed that the type is part of that other layer. Also, if the application of this rule would

change the layer of a type, then it should also change the layer of types connected through

NestedClassHeuristic - as otherwise these changes would be invalidated during the next

graph visit.

After the traversal of nodes in the type graph, layer of many types possibly got deter-

mined. Therefore, it has also become possible to determine the layers of their connected

types. For this reason, the nodes of the previous graph must be traversed once more to

distribute these newly discovered layers along the edges of the type graph.

Since it is imaginable that not all types were assigned layers besides

CannotBeDetermined, these types will be assigned the most occurring layer in their con-

taining namespace (if that is unambiguous), presuming that namespaces were formed to

represent the structure of architectural layers.

If a type has more connected layers, and these would indicate that the type should

belong to different layers, the type will be assigned the layer with most occurrences (al-

though, this ambiguity will be discovered as an inconsistency).

As a last step, if the layer of a type was explicitly provided in the codebase (via an

attribute), it is possible that this layer was overridden by the previously detailed layer

identification process. However, we want to maintain the possibility of explicitly stating

a type’s layer, therefore after the process, a method should ensure these cases.

Furthermore, a method should search for all inconsistencies of the process. Such a

method would have to identify cases when knowledges registered to a type and its names-

pace describe conflicting layers. (App layer knowledges are ought to be excluded as usu-

35

3. Methods

ally its related types are not placed in separate namespaces.)

Extracting Knowledges with heuristics

Evaluating heuristic results

Initialization

Assigning layer to namespaces

Assigning layers to types based on primary knowledges

Build type graph

Distribute layers along edges of the type graph

Assign layers based on type names

Assign layers based on namespaces

Apply special rules

Distribute layers along edges of the type graph
(for a second time)

Assign layers based on the most common
layer of namespaces

Ensure explicitly assigned layers (by attributes)

Check for inconsistencies

Figure 3.9: Activity diagram of the layer identification process of types. Actions colored
green are detailed on Figure 3.10 and Figure 3.11.

36

3. Methods

Retrieving basic potential layer knowledges

Layer cannot be determined

That layer type is assigned

There is none

There is only one

All potential layers are the same
yes no

That layer type is assigned There was a layer with the most occurrences
yes no

That layer type is assigned Layer cannot be determined

There are more potential layers

Figure 3.10: Activity diagram of the process of assigning layers to types based on
primary knowledges.

Determine topological order
and cycles in the graph

First, assign layers within the cycles

Assign layer types based on topological order

Figure 3.11: Activity diagram of the process of distributing layers along the edges of the
type graph.

3.6.2 Related knowledges

In order to provide a technique of identifying architectural layers of types, that fits

into the proposed analysis model, a particular knowledge that holds information about the

potential layer of a type is introduced, so that later, these knowledges can be registered

into IKnowledgeHolder implementations such as TypeHolder and even TypeCollection.

37

3. Methods

To be more specific, a number of types implementing the IKnowledge interface are de-

fined. These will have a common abstract base class of PotentialLayerKnowledge which

holds information about the used heuristic that produced this assumption (of a type be-

longing to a specific layer). Moreover, it was a targeted goal in Section 2.9 to give stu-

dents more insight regarding the thought process of a lecturer while evaluating a stu-

dent submission. In order to ensure that, a Reason string property will be present at each

PotentialLayerKnowledge.

Besides this, another abstract type in the form of Speci f icPotentialLayerKnowledge

is defined that is derived from the previous and holds the specific LayerType

that the knowledge refers to. It has two implementations which are not abstract:

BasicPotentialLayerKnowledge and NameBasedPotentialLayerKnowledge. (They con-

tain the same members, but are not meant to represent the same kind of knowledge.)

Derived classes of PotentialLayerKnowledge also include

ConnectedPotentialLayerKnowledge that is used to represent the case when a cer-

tain type’s architectural layer depends on the layer of another type. This cannot have

information about the layer of a type, but can only contain a reference to the connected

type as member, as the layer of that type might not be known at the time this connection

is discovered.

IKnowledge

DependencyKnowledge

TypeSymbol() : ITypeSymbol
DependencyTypeSymbol() : ITypeSymbol
Locations() : HashSet<DependencyLocation>

properties

DependencyLocation

Source() : DependencySource
Location() : Location

properties

DependencySource

Default = 0,
Attribute = 2,
FieldDeclaration = 4,
VariableDeclaration = 8,
ArrayType = 16,
...

PotentialLayerKnowledge

UsedHeuristic() : String
Reason() : String

properties

SpecificPotentialLayerKnowledge

LayerType() : LayerType
properties

BasicPotentialLayerKnowledge NameBasedPotentialLayerKnowledge

ConnectedPotentialLayerKnowledge

ConnectedTypeSymbol() : ITypeSymbol
properties

Figure 3.12: Class diagram of IKnowledge related types.

3.6.3 Heuristics

In order to be able to specify and categorize heuristics, a number of heuris-

tic interfaces were introduced. Figure 3.13 shows these interfaces. A common in-

terface of IHeuristic was identified with the sole purpose of registering knowledges

38

3. Methods

to the types of a TypeCollection containing the potential architectural layer that the

type belongs to (and the reason of this assumption). Besides this, two more kinds

of heuristic interfaces were defined to categorize specific heuristics in the future.

These two interfaces are INameBasedHeuristic and ITypeConnectionHeuristics. The

specialty of these two is that they register special knowledges to the TypeHolders.

The former NameBasedPotentialLayerKnowledge, representing the potential layer of

a type determined by a name (name of a type or name of a namespace); the latter

ConnectedPotentialLayerKnowledge, representing the dependency relation in regard to

the potential architectural layer of another type.

IHeuristic

INameBasedHeuristic ITypeConnectionHeuristic

Figure 3.13: Heuristic interfaces and the relationships between them.

BaseTypeHeuristic

This heuristic derives from IHeuristic. Its purpose is to register

BasicPotentialLayerKnowledges into TypeHolders if their type inherits from a

base type that implies a specific layer. The map of layers and their connected base types

are listed in the configuration of the tool (see subsection 3.1.2).

AttributeHeuristic

This heuristic derives from IHeuristic. Its purpose is to register

BasicPotentialLayerKnowledges into TypeHolders if their type or any of its members

have a specific attribute that implies a specific layer. The map of layers and their

connected attributes are listed in the configuration of the tool (see subsection 3.1.2).

AppLayerHeuristic

This heuristic derives from IHeuristic. Its purpose is to register

BasicPotentialLayerKnowledges into TypeHolders if their type has a method that

can be used as an entry point of the application, that is, the method is static, its name

39

3. Methods

is Main, it is contained in a type that is a class or a struct, it does not have any type

parameters, and either has a string array parameter or no parameters at all.

ReferencedNamespaceHeuristic

This heuristic derives from IHeuristic. Its purpose is to register

BasicPotentialLayerKnowledges into TypeHolders if their type has a dependency

connection to a type that is in a namespace that implies a specific layer. The map of

layers and their referenced namespaces are listed in the configuration of the tool (see

subsection 3.1.2).

NamespaceNameHeuristic

This heuristic derives from INameBasedHeuristic. Its purpose is to register

NameBasedPotentialLayerKnowledges into TypeCollections if their namespace resem-

bles the name of a specific layer. This match is determined by TypeNameHel per (see

subsection 3.6.3).

TypeNameHeuristic

This heuristic derives from INameBasedHeuristic. Its purpose is to register

NameBasedPotentialLayerKnowledges into TypeHolders if their type name resembles

the name of a specific layer. This match is determined by TypeNameHel per (see subsec-

tion 3.6.3).

This heuristic also introduces a special rule: if the name of a type starts or ends with

the word Mock, it is assumed that it belongs to the Test layer.

InterfaceHeuristic

This heuristic derives from ITypeConnectionHeuristic. Its purpose is to register

ConnectedPotentialLayerKnowledges into TypeHolders if their type inherits from an-

other user-defined type. (That way, layer of the first type will become dependent on the

type of its interface or base class.)

EventArgsHeuristic

This heuristic derives from ITypeConnectionHeuristic. Its purpose is to register

ConnectedPotentialLayerKnowledges into TypeHolders if their type is used as event

40

3. Methods

argument at some point. This heuristic connects the layer of event arguments to the layer

of types that have an event with that event argument.

NestedClassHeuristic

This heuristic derives from ITypeConnectionHeuristic. Its purpose is to register

ConnectedPotentialLayerKnowledges into TypeHolders if their type is a nested type of

another user-defined type or vice versa. This heuristic connects the layer of nested types

to the layer of their containing types and vice versa.

ExceptionHeuristic

This heuristic derives from ITypeConnectionHeuristic. Its purpose is to register

ConnectedPotentialLayerKnowledges into TypeHolders if their type is an exception and

it is thrown at some point. This heuristic connects the layer of exception types to the layer

of types that have a throw expression related to those exceptions.

TypeNameHelper

TypeNameHel per is not a heuristics, but a helper class used by some heuristics, which

contains a method that can assign a layer to the given name of a type or a namespace.5

The method should first check if the given parameter equals to the name of any ar-

chitectural layer. If there is a match, that layer should be returned. After that, it should

be checked whether the given parameter contains the name of any layers. If it contains

exactly one, it should be returned. If after the previous steps there were no results to be

returned, the given parameter should be checked against the name of each layer using

some kind of a distance metric, for instance the Levenshtein distance [42]. The purpose

of that is to make sure that any spelling mistakes would not influence this kind of layer

identification (see subsection 2.3.1). If there is a minimal distance to a layer, that should be

returned. If all the previous steps fail to return a layer, then CannotBeDetermined should

be returned.

Although, the use of a distance metric can be useful during layer identification, if the

minimal distance to a layer’s name is large enough, the identification strategy can be quite

inefficient. Therefore, we suppose the use of an upper limit, such as two.

5Not fully qualified name.

41

3. Methods

During this process, layers of CannotBeDetermined and App should be excluded as

the former is not a practical architectural layer, and the latter would highly influence the

results (for instance type names ending with the word Map would most certainly end up

sorted into the wrong - App - layer). Also, while comparing strings, ignoring case seems

justified.

3.6.4 Example for layer identification

This subsection provides an example regarding the proposed layer identification pro-

cess. The abstract Sudoku game from a previous example shown on Figure 3.5 will serve

as a base for this example as well.

As a first step, the rules of the registered heuristics are evaluated. Based on typical

base types and used attributes, the following knowledges could be determined:

1. MainWindow belongs to the View layer, as it inherits from

System.Windows.Window,

2. ViewModelBase belongs to the ViewModel layer, as it inherits from

System.ComponentModel.INotifyPropertyChanged,

3. MainViewModel belongs to the ViewModel layer, as it inherits from

System.ComponentModel.INotifyPropertyChanged,

4. CustomValueConverter belongs to the ViewModel layer, as it is annotated with the

attribute System.Windows.Data.ValueConversionAttribute,

5. the TypeCollection representing the ValueConverters folder is assigned the

ViewModel layer, as its closest ancestor has that as well,

6. other TypeCollections are assigned the layer corresponding to the name of their

represented folders,

7. ViewModelBase belongs to the ViewModel layer, as its name contains

"ViewModel" and does not contain the name of any other layer6,

8. MainViewModel belongs to the ViewModel layer, as its name contains

"ViewModel" and does not contain the name of any other layer,

9. IGameModel belongs to the Model layer, as its name contains "Model" and does

not contain the name of any other layer,

10. GameModel belongs to the Model layer, as its name contains "Model" and does

not contain the name of any other layer,

6Layer names containing each other are excluded in these cases (e.q. View and ViewModel).

42

3. Methods

11. there is a connection between the layers of ViewModelBase and MainViewModel,

12. there is a connection between the layers of IGameModel and GameModel.

The next step is the evaluation of the results of the heuristics. At first, all

types are assigned CannotBeDetermined. Then, the TypeCollection representing the

ValueConverters folder is assigned the ViewModel layer, as its closest ancestor has that

as well, while all other TypeCollections are assigned the layer corresponding to the name

of their represented folders. After these, based on 1-4, layers of the four related types can

be assigned obviously. At this point, the type graph is built, and layers are tried to be dis-

tributed along its edges (with no effect in this case). Since after the previous steps there

are two types without a specific layer (IGameModel and GameModel), these types are

assigned layers based on their names (that would be the Model layer in both cases).

As of this point, the layer of all types has been identified, further actions (even those

of special rules) will have no effect on this example set. Finally, it should be mentioned

that there were no inconsistencies regarding this example.

3.7 Defined rules

Based on the previous sections and subsection 2.3.1, the following cases are expected

to be recognized during architectural analysis:

• when the architectural layer of a user-defined type could not be determined during

the layer identification process,

• when inconsistencies were found during the layer identification process,

• when the submission lacks required layers of the examined architecture,

• when invalid dependencies were found between layers,

• when method calls were found between unrelated layers,

• when the handling of an event was not done in appropriate layers,

• when an object leaks its representation,

• when an object has a member that might leak its representation,

• when a class depends on a concretion (but could depend on an abstraction instead),

• when event handlers are defined in files with xaml.cs extension.

43

3. Methods

3.8 Reported diagnostics

In this section, the defined rules are introduced in the form of their related diagnostics,

their details are explained and examples regarding them are given, along with counterex-

amples if possible.

Table 3.1 lists the defined diagnostics with be their identifiers and titles. According to

Microsoft, identifiers of diagnostics should be of form <PREFIX><number> where the

prefix should be longer in order to avoid conflicting identifiers [43]. Therefore, identifiers

of the defined diagnostics will have the prefix of ARCH and their numbers will start from

1000 and then increase.

The first group of diagnostics (ARCH1000-ARCH1004) are connected to architectural

layer clustering and basic architectural rules; the second group (ARCH1006-ARCH1007)

is associated with representation leak detection, while the remaining diagnostics come

from bad practices that are considered relatively smaller violations during the related

university course. The following subsections will detail these diagnostics.

Diagnostic id Diagnostic title
ARCH1000 Layer cannot be determined
ARCH1001 Inconsistency during layer identification
ARCH1002 Missing required layer
ARCH1003 Invalid dependency between layers
ARCH1004 Method call between unrelated layers
ARCH1005 Events should be handled in appropriate layers
ARCH1006 Representation leak
ARCH1007 Possible representation leak
ARCH1008 Class depends on concretion
ARCH1009 Don’t define event handlers in xaml.cs files

Table 3.1: Reported diagnostics by their identifiers and titles.

3.8.1 ARCH1000 - Layer cannot be determined

In Section 3.6, the layer clustering technique of user-defined types to architectural

layers states and ensures that if the corresponding architectural layer of a type cannot be

determined, it will be assigned a special layer type (CannotBeDetermined). It is consid-

ered important to notify students of such cases as these types might look like that they are

not part of the current solution, and their placement in the actual C# solution next to other

types becomes questionable.

44

3. Methods

Furthermore, these types can pose threats in the flow of checking architectural vio-

lations that is yet to come (right after layer clustering). It is possible that valuable diag-

nostics cannot be reported as the layer of the type could not be determined, which is a

problem.

In order to prevent the possibility of such cases, the extended part of layer clustering

was made configurable, and that basic configuration gives students the chance to annotate

their types with the built-in C# DescriptionAttribute (its parameter must be the name

of the desired layer). That way, if students explicitly express their intention to place a

type into a certain layer, the efficiency and accuracy of the reported diagnostics can be

maximized.

3.8.2 ARCH1001 - Inconsistency during layer identification

It is possible that the clustering algorithm was not able to classify a type as a part of

any specific architectural layer, as there were conflicts from the extracted data regarding

which layer should contain that type. It is considered important to notify students of such

cases as not being sure of the architectural layer of a user-defined type can seriously in-

fluence the future flow of architectural violation checking. Therefore, cases when such

inconsistencies are found regarding a type, a diagnostic should be reported at the loca-

tion of the type definition, while the description of the diagnostic should contain all the

potential layers and the reasons why it is assumed that the type belongs to those layers.

Example

A class named GameViewModel which implements the INoti f yPropertyChanged in-

terface has a method that performs file operations that require the use of the System.IO

namespace. This class should be sorted into the ViewModel layer based on its name and

based on the interface it implements, however, it could also be sorted into the Persistence

layer since it uses System.IO. This conflict should be reported in the form of a diagnostic

at the location where GameViewModel is defined.

3.8.3 ARCH1002 - Missing required layer

Subsection 3.3.6 describes that architectures may have required layers that must be

present in a submission, therefore, in cases when the analyzed submission lacks such

a required architectural layer, a diagnostic should be reported. This diagnostic should

45

3. Methods

be reported without a specific location in source files as it describes a property of the

analyzed submission itself and is not related to any specific part of the implementation,

but to the solution as a whole.

Example

A submission that is being analyzed against MVVM architecture does not contain any

types that are part of the ViewModel layer, therefore, it lacks the complete ViewModel

layer which is considered as an architectural violation.

3.8.4 ARCH1003 - Invalid dependency between layers

This diagnostic should be reported in case of invalid dependencies between layers,

that is, when the determined dependencies between user-defined types imply that these

dependencies violate the dependency rules of the examined architecture. This diagnostic

is related to types, and therefore should be reported at type definitions, and their descrip-

tion should contain the types that cause the invalid dependencies.

3.8.5 ARCH1004 - Method call between unrelated layers

If a method call is present in a user-defined type which is part of the architectural

layer of A, and the called method is in a type which is part of the architectural layer

of B, such that A and B violates the dependency rules of the analyzed architecture (see

subsection 3.3.6), that method call is between unrelated layers, and therefore should be

reported. (A and B comes from the set of possible layers of the analyzed architecture.)

The diagnostic should be reported at the location of the method call and its description

should contain the two disconnected architectural layers.

3.8.6 ARCH1005 - Events should be handled in appropriate layers

This diagnostic should be reported when the raising and handling of an event happens

in two disconnected architectural layers, at the location of the event handlers.

46

3. Methods

3.8.7 ARCH1006 - Representation leak

This diagnostic should be reported when from the type definition, it is obvious that

instances of that type will be suspect to representation leaks. The following cases certainly

imply the possibility of a leaking representation and therefore should be handled:

• if the type has a public field7,

• if a member field is directly returned, while its type is not immutable.

Some remarks regarding the previous cases:

• Using these rules, only types in the Persistence and Model layers should be an-

alyzed, as in the case of other layers, encapsulation might be slightly differently

interpreted.

• Static and const fields should be ignored, as either these cannot be considered as

part of the representation of an instance or their value cannot be changed.

• During analysis, a type can be considered immutable if it is a string [45],

a record type [46] or a value type [47] in general. (Types in namespace

System.Collections.Immutable could also be listed, although those types are not

especially usual in the analyzed submissions.)

3.8.8 ARCH1007 - Possible representation leak

This diagnostic should be reported for types that have a type member, for which

ARCH1006 was reported, because their representation is leaked, and therefore their us-

age could result in the containing type leaking its own representation, hence using them

should be avoided.

3.8.9 ARCH1008 - Class depends on concretion

This diagnostic should be reported when a user-defined type has a constructor with a

parameter that has the type of another user-defined type. If the type of that parameter is not

abstract (not an abstract class or an interface) and has an abstract base class or interface,

the original type depends on a concretion, when it could depend on an abstraction. If

reported, the location of the diagnostic should be the constructor, so that this diagnostic

could be reported for more constructors of the same class.

7This case is already reported by the S1104 diagnostic of Sonar.Analyzers [44], however ARCH1006
wishes to identify representation leaks even without the use of external analyzers.

47

3. Methods

3.8.10 ARCH1009 - Don’t define event handlers in xaml.cs files

This diagnostic should be reported in case of event handlers defined in files with

xaml.cs extension and contained within a class representing a Window (inheriting from

System.Windows.Window), at the location of the event handlers.

3.9 Proposed analyzers

Based on the previously defined custom diagnostics, a number of analyzers are pro-

posed with the description of their tasks. Simply, the basic task of these analyzers is to

register actions that collect data during the data extraction phase, and actions that perform

violation checks on the collected data and report related diagnostics in the diagnostic re-

port phase. Analyzers are usually defined in relation to a specific diagnostic. The overall

structure of the proposed analyzers is shown on Figure 3.14.

It is emphasized once more, that during the implementation of these analyzers, the use

of multi-threaded tools is suggested to ensure thread-safety during concurrent execution

of the analysis.

Also, most diagnostics require certain knowledge regarding the architectural layer of

the related types when they are reported. Therefore, diagnostics should not be reported if

the related types had inconsistencies during the layer identification process.

DiagnosticAnalyzer

BaseArchitecturalAnalyzer

DependencyAnalyzer

LayerAnalyzer

InconsistenciesDuringLayerIdentificationAnalyzer

LayerCannotBeDeterminedAnalyzer

MissingRequiredLayerAnalyzer

InvalidDependencyBetweenLayersAnalyzer

MethodCallBetweenUnrelatedLayersAnalyzer

EventsShouldBeHandledInAppropriateLayersAnalyzer

LeakedRepresentationAnalyzer

ClassDependsOnConcretionAnalyzer

DontDefineEventHandlersInXamlCsFilesAnalyzer

Figure 3.14: Class diagram of analyzer classes.

48

3. Methods

3.9.1 InconsistenciesDuringLayerIdentificationAnalyzer

After the layer identification process, this analyzer should collect inconsistencies of

the process, and report them at the location of type declarations, mentioning the potential

layers in the diagnostic’s description, while also including the reason of layer assump-

tions.

3.9.2 LayerCannotBeDeterminedAnalyzer

After the layer identification process, this analyzer should collect the cases when the

architectural layer of a type could not be determined, and report them.

3.9.3 MissingRequiredLayerAnalyzer

After the layer identification process, this analyzer should filter for cases when re-

quired architectural layers of the examined architecture are missing, and report them.

However, these cases should only be reported once for a solution, without a specific loca-

tion in source.

3.9.4 InvalidDependencyBetweenLayersAnalyzer

After the layer identification process, as not only the results of clusterization, but also

the dependency connections between architectural layers are known, this analyzer should

filter for the dependencies that violate the ruleset of the examined architecture. The related

diagnostics should be reported for type declarations, containing that type’s dependencies

grouped by their containing layer.

3.9.5 MethodCallBetweenUnrelatedLayersAnalyzer

This analyzer should visit invocations in an analyzed type’s AST. From these invoca-

tions (and from information provided by the related semantic model), type of the caller

and type containing the called method can be recovered. After the layer identification

process, the architectural layer of these recovered types can be queried, and if these lay-

ers violate the ruleset of the examined architecture, diagnostics should be reported at the

location of the invocation.

49

3. Methods

3.9.6 EventsShouldBeHandledInAppropriateLayersAnalyzer

This analyzer should visit assignment expressions in an analyzed type’s AST. From

these assignment expressions (and from information provided by the related semantic

model), type of the assignment expression and type of the right side of the assignment

can be recovered. From these cases, assignments must be filtered: the kind of the assign-

ments must be MethodKind.EventAdd, which corresponds to event handler assigments.

During the diagnostic report phase, layers connected to the remaining event handler as-

signments should be queried for the layer of the type containing the event symbol and for

the layer of the type containing the event handler itself. If these two violate the ruleset

of the examined architecture, diagnostics should be reported at the location of the event

handler assignment.

3.9.7 LeakedRepresentationAnalyzer

During the data extraction phase, this analyzer must visit return statements, and mark

those of them which return a non-static and non-const member field of the analyzed type.

(Although, it should be checked whether there is another variable with the same name

declared within the same scope.) Also, non-static and non-const fields must be collected.

During the diagnostic report phase, the marked return statements should be reported if

their containing type is part of the Persistence or Model layer. Besides these, the collected

non-static and non-const fields should also be reported.

Furthermore, this analyzer is unique in a sense, as unlike the others it can report mul-

tiple diagnostics. The previous paragraphs described the report process for ARCH1006

diagnostics, however the rule of ARCH1007 requires knowledge about types leaking their

representation, therefore it seems practical to let this analyzer report these diagnostics as

well.

Accordingly, during the diagnostic report phase, when the set of types leaking their

representation is already known, the set of all user-defined types must be traversed and

if any of them has a member with a representation leaker type, an ARCH1007 diagnostic

should be reported at the original type’s declaration. The description of the diagnostic in

such a case is ought contain the names of the related potentially representation leaking

fields.

50

3. Methods

3.9.8 ClassDependsOnConcretionAnalyzer

During the diagnostic report phase, this analyzer should determine the set of concrete

types which have an abstract type or an interface they implement. After then, constructors

of all user-defined types must be observed. If a constructor has a parameter with a concrete

type, a diagnostic should be reported at the location of the constructor.

3.9.9 DontDefineEventHandlersInXamlCsFilesAnalyzer

This analyzer is special, as it does not inherit from any special analyzer base class, just

the default DiagnosticAnalyzer abstract class. It analyzes method symbols: if a method

is an event handler, with a location within a file with xaml.cs extension and its contain-

ing type inherits from System.Windows.Window, a diagnostic should be reported at its

location.

The characteristics of an event handler method are the following: it returns void, has

two parameters and its first parameter is object.

3.10 Integration with evaluator system

Section 2.5 introduces and describes TMS, its workflow and mentions that it is config-

urable. Subsection 3.1.1 lists the requirements of the proposed tool. These requirements

include that the output of the proposed tool should be compatible with the xml output

generated by Roslynator. This is to make its integration with TMS easier (as it already

supports the output of Roslynator).

In order to integrate the proposed tool, TMS can easily be configured. Only a Docker

image needs to be created, along with a script that runs the analysis. The Dockerfile used

to build the image should use the already existing evaluator image that is used to analyze

solutions with Roslynator. On top of that, the new image must contain the implementa-

tion of the architectural analyzer tool (supposedly through an installation from a NuGet

package registry) and the shell script running the analysis itself.

The mentioned shell script must first run the original static code analysis using

Roslynator, since the results of it and that of the architectural analyzer should be dis-

played alongside each other at the end. (The xml result of this step must be saved.) After

then, the architectural analyzer tool must be invoked on the submission, generating an xml

output of its results.

51

3. Methods

Since the results of both analyzers resemble the same structure, they can and should

be merged into a single xml file. This ultimate xml file then contains the results of both

analyses and since the original output files shared a common schema, this merged ver-

sion will also be valid by that schema. Therefore, its structure is appropriate and can be

processed by CodeChecker to display data to the users of TMS. The script or application

that is able to merge the output xml files must also be included in the previously described

Docker image.

52

Chapter 4

Results and validation

In order to assess the proposed methods, an implementation of the proposed tool per-

forming architectural analysis was created and was integrated with TMS. Using the tool,

student submissions from past semesters were evaluated.1 In this chapter, results of this

evaluation are presented, and in the end, the initial research questions are addressed.

The evaluation of student submissions is two-sided. First, results of the proposed clus-

tering method should be evaluated, and then the submissions themselves.

4.1 Evaluating the clustering method

In this section, we aim to present the results of evaluating the type clustering method

through the analysis of student submissions. The goal of this evaluation is to calculate the

percentage of the correctly clustered types in regard to all types present in the examined

submissions.

Accordingly, a metric needs to be introduced, therefore, as a first step of this eval-

uation, accuracy is defined as the ratio of the number of types that were assigned their

correct layer and the total number of types. In order to calculate the accuracy of a submis-

sion or the set of all submissions, the layer clustering of all examined student submissions

were created manually to serve as a ground truth.

This manual determination of the architectural layer of user-defined types were done

considering the lecturer thought process of evaluating these submissions. Hence, ambigu-

ous cases were decided with the examination of the submission as a whole, choosing the

closest architectural layer possible. It was also important to be consequent regarding cases

1Along with this thesis, a sample submission is provided to demonstrate most of the reported diagnostics
through an example.

53

4. Results and validation

resembling similar ambiguous cases. If there was no clear indicator helping the identifi-

cation of a type’s layer, the type was placed into a special layer (CannotBeDetermined),

which contains types without a specific layer.

During evaluation, 947 student submissions were examined. The related C# solu-

tions of these submissions contained a total number of 13126 user-defined types. These

types had to be clustered both manually and with the use of the created tool into the

seven defined architectural layers (Persistence, Model, ViewModel, View, App, Test and

CannotBeDetermined).

Inspecting the extended output of the architectural analyzer tool, the identified archi-

tectural layers of each type were collected and matched against the expected layers that

were obtained from the manual clusterization of types. This comparison showed that out

of the total number of 13126 user-defined types, the architectural layer of 12900 types

were identified correctly, while 226 incorrectly. Therefore, the accuracy of the layer iden-

tification process on the set of all student submissions is 0.9828 and the percentage of

layer identification errors is 1.72%.

The comparison of the expected and actual identified architectural layers also showed

that out of all submissions, 108 contained layer identification errors, that is 11.4% of all

submissions. However, it is also important to note, that this number contains submissions

even if they contain just one type with incorrectly identified layer.

Figure 4.1 shows the distribution of the 226 layer identification errors in regard to the

108 submissions containing these errors. It can be seen that in some cases the number of

errors in a submission reached a number between 5 and 15, however it happened only in

a negligible number of cases. The average number of errors per solution was around 2.

It is also important to mention, that in the case of the 226 incorrectly clustered types,

the layer of 65 types could not be determined, while in the case of 63 other types, in-

consistencies were indicated. Therefore, only 98 types were clustered incorrectly without

providing any information to the user - which is less than 1% of all types.

54

4. Results and validation

1 10 19 28 37 46 55 64 73 82 91 100 108
0

5

10

15

Labeled solutions

N
um

be
ro

fc
lu

st
er

iz
at

io
n

er
ro

rs

Figure 4.1: Distribution of clusterization errors in submissions.

4.2 Evaluating student submissions

The second part of the evaluation is evaluating the diagnostics collected during the

architectural analysis of student submissions. The number of each diagnostic reported for

all submissions is shown on Figure 4.2.

1,000 2,000

ARCH1000

ARCH1001

ARCH1002

ARCH1003

ARCH1004

ARCH1005

ARCH1006

ARCH1007

ARCH1008

ARCH1009

92
483

26
1,346

2,464
40

1,768
353

23
116

Number of reports

Figure 4.2: Diagnostics with the number of reported cases.

It can be seen that the most occuring diagnostic was ARCH1004 which reports method

calls between unrelated layers. However, these diagnostics can be partitioned further as

students were not explicitly prohibited to call methods two or more layers apart through

public properties of an object contained within an adjacent layer. Therefore, if these cases

55

4. Results and validation

are distinguished from all cases, this leaves ARCH1004 with a mere number of 904 re-

ports, which is not that outstanding at all. (Nevertheless, assignments of future semesters

are expected to require students to follow this rule.)

After that, the second most occuring diagnostic can be related to the violation of en-

capsulation, concerning the representation leak of objects. This diagnostic was reported

more than 1700 times, making it the second most common problem, however these re-

ported cases can also be grouped into two categories. First of all, out of all cases there

were 608, when public fields were defined within a type. The other cause of such a di-

agnostic could be a return statement returning a mutable member field of a type, which

happened in 1160 cases.

It is also important to examine how the reported diagnostics are distributed in regard

to the submissions and their user-defined types, this is shown on Figure 4.3. Table 4.1

displays the same results, extended with the percentage of diagnostic reports compared to

the number of all solutions and source files2.

It can be seen that despite being a diagnostic with only the third highest number of

reports, ARCH1003 (invalid dependency between layers) was reported for more than half

(53,75%) of all submissions, while affecting more than 10% of all source files.

Another noteworthy case is connected to representation leak reports (ARCH1006). It

is shown that the issue corresponding to the diagnostic is present in almost half (48,36%)

of all submissions, and is distributed among 9% of all source files.

The case of ARCH1007 (possible representation leak) diagnostic reports is remarkable

in a sense, as its percentage was over 20%, and it was reported for exactly 353 source

files. The latter is due to the fact that this diagnostic is reported for a type only once, so its

number being equal to the number of reports is completely reasonable. It is also notable

that the frequency of ARCH1007 reports is dependent on the reported ARCH1006 cases,

as the identified representation leak reports influence the reports of this diagnostic.

An interesting fact is that the diagnostic with the most reports (ARCH1004 - method

call between unrelated layers) was only reported in nearly over the quarter of all submis-

sions (27,03%), and is present in a mere number of 3,34% of all source files. From that,

it can be concluded that these violations were not so common amongst students, although

it means that a group of students made that mistake consequently.

As far as layer determination failures (ARCH1000) and layer identification inconsis-

2Since in multiple cases more than one type was placed into a single source file, the previously men-
tioned 13126 types are distributed in 12457 source files.

56

4. Results and validation

tencies (ARCH1001) are concerned, their number is significant as these diagnostics could

report information about 57% of all layer identification errors (see Section 4.1).

ARCH1002 (missing required layer) is an exception as that diagnostic is reported on a

submission level, without a type-specific location. All the other diagnostics happened in

a relatively small number of submissions and source files.

400 800 1,200

ARCH1000

ARCH1001

ARCH1002

ARCH1003

ARCH1004

ARCH1005

ARCH1006

ARCH1007

ARCH1008

ARCH1009

39

232

24

509

256

14

458

201

12

33

75

459

0

1,288

416

16

1,130

353

21

40

Solutions
Files

Figure 4.3: Diagnostics with the number of occurrences in solutions and source files.

Diagnostic id Solutions Source files
Number Percentage Number Percentage

ARCH1000 39 4,12 % 75 0,6 %
ARCH1001 232 24,5 % 459 3,68 %
ARCH1002 24 2,53 % - -
ARCH1003 509 53,75 % 1288 10,34 %
ARCH1004 256 27,03 % 416 3,34 %
ARCH1005 14 1,48 % 16 0,13 %
ARCH1006 458 48,36 % 1130 9,07 %
ARCH1007 201 21,22 % 353 2,83 %
ARCH1008 12 1,27 % 21 0,17 %
ARCH1009 33 3,48 % 40 0,32 %

Table 4.1: Number of reported diagnostics in the analyzed submissions and their source
files, extended with their percentage compared to all solutions/files.

57

4. Results and validation

4.2.1 Comparison

It was a natural requirement that diagnostics should not be reported when the related

violations were in connection with a type for which its architectural layer could not be

determined precisely (for instance if it had inconsistencies during the layer identification

process). In order to assess this, student submissions were modified, and all user-defined

types were explicitly applied their expected architectural layer through the use of C#

attributes. (This was done programatically using the manually created dataset that mapped

types to their expected architectural layer - see Section 4.1.) These modified submissions

were analyzed once more with the architectural analyzer tool. The results of this analysis

are shown on Figure 4.4. These results mirror the expected number of diagnostics that

would be reported in an ideal case when the layer identification of user-defined types is

100% accurate.

1,000 2,000

ARCH1000

ARCH1001

ARCH1002

ARCH1003

ARCH1004

ARCH1005

ARCH1006

ARCH1007

ARCH1008

ARCH1009

27
523

17
1,407

2,474
36

1,791
355

23
116

Number of reports

Figure 4.4: Diagnostics with the number of expected reported cases.

Comparing these results with the results of the previous analysis, it can be seen that

most of the expected numbers are higher than the related number of actual reported di-

agnostics. In fact, this is the justified and expected outcome, as more diagnostics can be

reported reliably when the architectural layer of the related types are certainly known at

the time of the analysis. This explanation is appropriate for some diagnostics, while others

require further clarification.

It can be seen that although the expected architectural layers of user-defined types

were explicitly set before the analysis, there are a few cases when ARCH1000 is reported,

which would mean that layers of those types could not be determined. However, it is

58

4. Results and validation

important to remember that the layer of some types cannot be determined after human

examination, and therefore these cases arise from the fact that these types in fact could

not be sorted into any architectural layer during manual inspection.

Also, the number of ARCH1001 diagnostic reports increased during the second analy-

sis. This is due to the fact that more inconsistencies may arise as the explicit layers are pro-

vided alongside with the other information extracted from the source code. Similarly, the

number of expected ARCH1003 and ARCH1004 reports are higher, as the higher number

of correctly identified layers provides a basis for potentially more diagnostics. However,

the number of ARCH1002, ARCH1005 and ARCH1006 reports decreased because of the

previous explanation.

As it was mentioned before, the number of reported ARCH1004 diagnostics can be

lower if cases related to special member access and method calls through more layers are

distinguished. The same filtering applied to the expected results yielded 929 diagnostics.

4.3 Addressing the research questions

This section sumarizes the evaluation results, while addressing the research questions.

RQ1. How does layer clustering based on heuristics perform on the dataset consist-

ing of submissions from past semesters? How accurate is it?

Section 4.1 explained the details of the evaluation of the layer clusterization method.

It was shown that for the specific type of student submissions related to the course of

Event-driven applications, a sufficient number of layer identification heuristics could be

defined which increased the efficiency of clusterization. After the analysis of submissions

from previous years, it was deduced that over 98% of user-defined types in the analyzed

submissions were sorted into correct architectural layers. This number is even higher if

we take into account that in almost 57% of the remaining cases, diagnostics were reported

regarding layer determination failures and clusterization inconsistencies.

RQ2. How error-prone is the proposed layer clustering method? What are the edge

cases of it? Under what circumstances is it most likely to fail?

It was shown that the layer clustering method performs well on the user-defined types

in the analyzed student submissions, because of the heuristics it uses. However, there are

59

4. Results and validation

some cases which show the limitation of the used technique. For instance, errors could be

provoked by avoiding the use of namespaces for the architectural layers; by placing types

outside all namespaces; by giving types and namespaces unrelated names; by intention-

ally causing layer identification inconsistencies; by making types depend on each other

causing circular dependencies, and so on. Generally, by trying to sabotage each step of

the layer identification process may cause issues.

RQ3. What are the most common issues of the analyzed submissions?

It was concluded that the most common issues of the analyzed student submissions

are related to invalid method calls between two unrelated layers, violations of the encap-

sulation principle (and therefore the presence of representation leaks), and invalid depen-

dencies between architectural layers in that order.

RQ4. How can the number of false positive cases of the reported diagnostics be min-

imized?

During the specification of diagnostics and analyzers, a number of measures have

been taken to reduce the number of false positive cases. For instance, analyzers do not re-

port any diagnostics if any type related to that violation had inconsistencies during layer

identification or the layer could not be determined at all. This way, diagnostics cannot

be reported for types if their architectural layer could not be determined with absolute

certainty. Results of this safety measure can be seen when the analysis results are com-

pared to expected analysis results with explicitly set correct layers, as it was described in

subsection 4.2.1.

RQ5. What conclusions can be drawn from the evaluation of student submissions

from past semesters?

It can be concluded that the architectural analysis of student submissions gave valu-

able insights regarding student tendencies.

First of all, a serious problem can be identified as there were cases in which the layer

identification process failed to cluster types into architectural layers. Since the process

mainly used well-defined approaches to group types into layers, its failure raises an im-

portant concern about the analyzed submission, questioning the fact that the submission

is well-structured and its architectural setup is straightforward.

60

4. Results and validation

From the perspective of architectural violations, students tend to call methods from

unrelated layers (although a significant amount of these happened through properties of

a middle layer). The other important architectural violation confirmed by the analysis

was the presence of invalid dependencies between otherwise not connected architectural

layers. Besides these, the high number of encapsulation principle violations also raises

concern, and indisputably requires further actions from the part of students and lecturers

as well.

The previous cases were highlighted as these were the most common issues during

the analysis which provided an insight to student habits, however the other rules revealed

noteworthy cases also. Finally, the main conclusion from the previous facts is that the im-

portance of the defined architectural and auxiliary rules must be emphasized more during

lectures.

RQ6. How can the revealed issues be useful from an educational methodology per-

spective?

The revealed issues could and should be drawn to the attention of the lecturers of the

related course, who should then estimate how the most common issues could be high-

lighted and emphasized during future semesters. Also, experiences of this analysis could

be taken into account when it comes to the modification of the currently existing student

assignments and the creation of new ones.

61

Chapter 5

Conclusion and discussion

This chapter summarizes the achievements of the conducted research and identifies

connected areas for potential future research.

First of all, before the research, the demand was identified to further increase the

level of automatic analysis of student submissions related to the course of Event-driven

applications with analysis from an architectural viewpoint. Therefore, the possibilities of

architectural and design pattern violation detection were explored. It was gathered how

others approached these problems, and it was deduced that for such kind of an analysis,

an architectural breakdown of the examined student submission must be available before

the actual violation checks can be evaluated.

Moreover, it was also shown that the default analysis workflow provided by the Roslyn

APIs was not suitable for the purposes of architectural analysis, and therefore a new work-

flow was introduced (along with an analyzer tool that uses it). This new model separated

the analysis into two parts, a data extraction phase and a diagnostic report phase. The task

of the first phase was to discover user-defined types, the dependencies between them, and

the type of these dependencies. The task of the second phase was to sort the user-defined

types into architectural layers, perform unique violation checks and report the detected

problems.

For the purpose of clustering user-defined types into architectural layers, a number

of solutions were taken into account. However, since the proposed architectural analyzer

tool was meant to be used for educational purposes, it was a natural requirement that it

should be able to provide as much information about the discovered errors as possible,

while mimicking the lecturer’s thought process when analysing a submission.

This was also true for the layer identification process of types: if the architectural layer

62

5. Conclusion and discussion

of a type could not be certainly determined, the analyzer tool was expected to indicate

inconsistencies of the layer identification. That is, when a type could be assigned to more

layers, the fact of conflicting layers should be communicated to the user, along with the

reasons why the inconsistency could happen in the first place.

For these reasons, the proposed clustering method uses a combined approach from

previous researches. The method is deterministic and automatic, meaning that it is able

to cluster user-defined types without user interference. It mainly relies on heuristics that

are able to state assumptions regarding the architectural layer of a type. The rules of

these heuristics usually came from the rules of the used SDK, the rules of the examined

university course and some were based on observations regarding the structure of student

submissions.

The method is automatic, however, it is important to mention that it enables the explicit

assignment of types to architectural layers, mainly for testing purposes, but this feature

can even be leveraged by users to ensure the required layer resolution of types during

analysis.

After the recovery of information related to user-defined types, the discovery of the

dependencies and connections between them, and the clusterization of these types into

architectural layers, all information was available for the violation checks to be performed

and for the diagnostics to be reported.

Since the framework for architectural analysis had already been defined, rules regard-

ing architectural violations were also defined, along with other rules related to the course

of Event-driven applications, such as classes depending on concretions instead of ab-

stractions, detection of objects leaking their representation or declared event handlers in

xaml.cs files.

After the previous rules were defined, nearly a thousand student submissions from

past semesters were analyzed with the created tool. The submissions were written in C#

language using WinForms and WPF frameworks, and MV and MVVM architectures. This

analysis revealed a large number of errors in the submissions, which otherwise could be

overlooked during manual evaluation. The results of the layer identification process and

reported diagnostics were evaluated and detailed in Chapter 4. After all, it was concluded

that the architectural analysis of student submissions is truly a useful practice, which

should be used for the analysis of future student assignments. It was also suggested that

the results from the analysis of previous student submissions should be taken into account

during future teaching activities. This way, lecturers of the related course could emphasize

63

5. Conclusion and discussion

the most occurring issues, and by that, perhaps eliminate their large percentage.

Last but not least, the conducted research provided practical outputs also, in the form

of the implemented architectural analyzer tool, the analyzers it uses and the tool’s inte-

gration with the introduced Task Management System (TMS).

5.1 Future work

Besides the topics and scope of the conducted research, the following possibilities

were identified for future research activities:

• extending functionality and the set of supported and analyzed architectures,

• extending testing scope to that of industrial applications, mainly for WPF applica-

tions using MVVM architecture,

• examining how this kind of architectural analysis could be used for other university

courses,

• improving the layer identification process of user-defined types and/or extending

the current configuration to do so,

• extending the rules of immutability related to representation leak detection,

• extending the representation leak detection by monitoring most (if not all) member

accesses,

• extending the analyzer tool to output a visual representation that could be displayed

by TMS. This way, during the evaluation of submissions, lecturers could easily

check if the structure of the implemented and submitted solution conforms to the

specification of the solution (as a document describing the specification of the sub-

mission is required alongside the submission).

64

Acknowledgements

The related research of this paper was supported by a student research scholarship at

Eötvös Loránd University Faculty of Informatics.

65

Appendix A

Tool configuration

This appendix contains a sample configuration for the proposed architectural analyzer

tool.

1 {

2 " DependencyAna lys i s " : {

3 " I g n o r e T y p e s W i t h A t t r i b u t e " : [

4 " System . Runtime . C o m p i l e r S e r v i c e s . C o m p i l e r G e n e r a t e d A t t r i b u t e " ,

5 " M i c r o s o f t . V i s u a l S t u d i o . T e s t P l a t f o r m . TestSDKAutoGeneratedCode " ,

6 " System . CodeDom . Compi le r . G e n e r a t e d C o d e A t t r i b u t e " ,

7 " System . D i a g n o s t i c s . Debugge rNonUse rCodeAt t r ibu t e " ,

8 " System . D i a g n o s t i c s . CodeAna lys i s . E x c l u d e F r o m C o d e C o v e r a g e A t t r i b u t e " ,

9 " System . ComponentModel . E d i t o r B r o w s a b l e A t t r i b u t e "

10]

11 } ,

12 " L a y e r I d e n t i f i c a t i o n " : {

13 " T y p i c a l B a s e T y p e s " : {

14 " P e r s i s t e n c e " : [] ,

15 " Model " : [] ,

16 " ViewModel " : [

17 " System . ComponentModel . I N o t i f y P r o p e r t y C h a n g e d " ,

18 " System . Windows . I n p u t . ICommand "

19] ,

20 " View " : [

21 " System . Windows . Window" ,

22 " System . Windows . Forms . Form " ,

23 " System . Windows . Forms . C o n t r o l "

24] ,

25 "App" : [

26 " System . Windows . A p p l i c a t i o n "

27] ,

28 " T e s t " : [

29 " Xun i t . Sdk . D a t a A t t r i b u t e "

30]

31 } ,

32 " T y p i c a l R e f e r e n c e d N a m e s p a c e s " : {

66

A. Tool configuration

33 " P e r s i s t e n c e " : [

34 " System . IO " ,

35 " System . Data . E n t i t y "

36] ,

37 " Model " : [] ,

38 " ViewModel " : [] ,

39 " View " : [] ,

40 "App" : [] ,

41 " T e s t " : [

42 " M i c r o s o f t . V i s u a l S t u d i o . T e s t T o o l s . U n i t T e s t i n g " ,

43 "Moq" ,

44 " Xun i t " ,

45 " Xun i t . Sdk " ,

46 " NUnit . Framework "

47]

48 } ,

49 " T y p i c a l A t t r i b u t e s " : {

50 " P e r s i s t e n c e " : [

51 " System . ComponentModel . D e s c r i p t i o n A t t r i b u t e (\ " P e r s i s t e n c e \ ") "

52] ,

53 " Model " : [

54 " System . ComponentModel . D e s c r i p t i o n A t t r i b u t e (\ " Model \ ") "

55] ,

56 " ViewModel " : [

57 " System . ComponentModel . D e s c r i p t i o n A t t r i b u t e (\ " ViewModel \ ") " ,

58 " System . Windows . Data . V a l u e C o n v e r s i o n A t t r i b u t e "

59] ,

60 " View " : [

61 " System . ComponentModel . D e s c r i p t i o n A t t r i b u t e (\ " View \ ") "

62] ,

63 "App" : [

64 " System . ComponentModel . D e s c r i p t i o n A t t r i b u t e (\ " App \ ") "

65] ,

66 " T e s t " : [

67 " System . ComponentModel . D e s c r i p t i o n A t t r i b u t e (\ " T e s t \ ") " ,

68 " M i c r o s o f t . V i s u a l S t u d i o . T e s t T o o l s . U n i t T e s t i n g . T e s t C l a s s A t t r i b u t e " ,

69 " M i c r o s o f t . V i s u a l S t u d i o . T e s t T o o l s . U n i t T e s t i n g . T e s t M e t h o d A t t r i b u t e " ,

70 " Xun i t . F a c t " ,

71 " NUnit . Framework . T e s t "

72]

73 }

74 }

75 }

Code A.1: Sample configuration of the proposed architectural analyzer tool.

67

Bibliography

[1] ELTE. Hallgatói létszám adatok. https://neptun.elte.hu/VcShowReport/

Index/341?skey=kEK61DN0NsNzQ5BjUmDpbFAn. Accessed: 2024.05.02.

[2] Nick Anderson. “College is remade as tech majors surge and humanities dwindle”.

In: The Washington Post (May 19, 2023). URL: https://www.washingtonpost.

com / education / 2023 / 05 / 19 / college - majors - computer - science -

humanities (visited on 05/02/2024).

[3] Péter Kaszab and Máté Cserép. “Detecting Programming Flaws in Student

Submissions with Static Source Code Analysis”. In: Studia Universitatis Babeş-

Bolyai Informatica 68.1 (2023), pp. 37–54. ISSN: 2065-9601. DOI: 10.24193/

subbi . 2023 . 1 . 03. URL: https : / / www . cs . ubbcluj . ro / ~studia - i /

journal/journal/article/view/87.

[4] Péter Kaszab. Automated evaluation of programming assignments with static code

analysis. https://tms-elte.gitlab.io/theses/kaszab_peter_tdk.pdf.

Accessed: 2024.05.02.

[5] Microsoft. Architectural principles. https : / / learn . microsoft . com / en -

us / dotnet / architecture / modern - web - apps - azure / architectural -

principles. Accessed: 2024.05.02.

[6] David Garlan. “Software architecture”. In: (2008).

[7] Varusai Mohamed, Shamsudeen Abubucker, and Abubucker Shaffi. “A study on

Model-View-View Model (MVVM) Design Pattern”. In: International Journal

of Emerging Technology and Advanced Engineering [VOLUME 6] (July 2016),

p. 264.

[8] Ian Sommerville. Software Engineering. 10th. Pearson, 2015. ISBN: 0133943038.

68

https://neptun.elte.hu/VcShowReport/Index/341?skey=kEK61DN0NsNzQ5BjUmDpbFAn
https://neptun.elte.hu/VcShowReport/Index/341?skey=kEK61DN0NsNzQ5BjUmDpbFAn
https://www.washingtonpost.com/education/2023/05/19/college-majors-computer-science-humanities
https://www.washingtonpost.com/education/2023/05/19/college-majors-computer-science-humanities
https://www.washingtonpost.com/education/2023/05/19/college-majors-computer-science-humanities
https://doi.org/10.24193/subbi.2023.1.03
https://doi.org/10.24193/subbi.2023.1.03
https://www.cs.ubbcluj.ro/~studia-i/journal/journal/article/view/87
https://www.cs.ubbcluj.ro/~studia-i/journal/journal/article/view/87
https://tms-elte.gitlab.io/theses/kaszab_peter_tdk.pdf
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles

BIBLIOGRAPHY

[9] Microsoft. Desktop Guide (Windows Forms .NET). https://learn.microsoft.

com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-8.0.

Accessed: 2024.05.02.

[10] Microsoft. Desktop Guide (WPF .NET). https://learn.microsoft.com/en-

us/dotnet/desktop/wpf/overview/?view=netdesktop- 8.0. Accessed:

2024.05.02.

[11] Microsoft. What is .NET MAUI? https://learn.microsoft.com/en- us/

dotnet/maui/what-is-maui?view=net-maui-8.0. Accessed: 2024.05.02.

[12] Microsoft. What is Xamarin.Forms? https://learn.microsoft.com/en-

us/previous-versions/xamarin/get-started/what-is-xamarin-forms.

Accessed: 2024.05.02.

[13] Microsoft. Events (C# Programming Guide). https://learn.microsoft.com/

en-us/dotnet/csharp/language-reference/keywords/event. Accessed:

2024.05.02.

[14] Andrew Burnett-Thompson. Is WPF Dead? The Data Says Anything But, here’s

why. https://www.scichart.com/blog/is-wpf-dead-whats-the-future-

of-wpf. Accessed: 2024.05.02.

[15] Microsoft. .NET dependency injection. https : / / learn . microsoft . com /

en - us / dotnet / core / extensions / dependency - injection. Accessed:

2024.05.02.

[16] Microsoft. Data binding overview (WPF .NET). https://learn.microsoft.

com/en-us/dotnet/desktop/wpf/data/?view=netdesktop-8.0. Accessed:

2024.05.02.

[17] Microsoft. The .NET Compiler Platform SDK. https://learn.microsoft.com/

en-us/dotnet/csharp/roslyn-sdk. Accessed: 2024.05.02.

[18] Microsoft. Understand the .NET Compiler Platform SDK model. https://learn.

microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model.

Accessed: 2024.05.02.

[19] Máté Cserép and Péter Kaszab. Task Management System. https://tms-elte.

gitlab.io. Accessed: 2024.05.02.

[20] Josef Pihrt. Roslynator. https://josefpihrt.github.io/docs/roslynator.

Accessed: 2024.05.02.

69

https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-8.0
https://learn.microsoft.com/en-us/previous-versions/xamarin/get-started/what-is-xamarin-forms
https://learn.microsoft.com/en-us/previous-versions/xamarin/get-started/what-is-xamarin-forms
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://www.scichart.com/blog/is-wpf-dead-whats-the-future-of-wpf
https://www.scichart.com/blog/is-wpf-dead-whats-the-future-of-wpf
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/data/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/data/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model
https://tms-elte.gitlab.io
https://tms-elte.gitlab.io
https://josefpihrt.github.io/docs/roslynator

BIBLIOGRAPHY

[21] Zuzana Dankovčíková. Custom Roslyn Tool for Static Code Analysis. https://

is.muni.cz/th/f6oc3/masterThesis.pdf. Accessed: 2024.05.02.

[22] Giuseppe Scanniello et al. “An approach for architectural layer recovery”. In:

Proceedings of the 2010 ACM Symposium on Applied Computing. SAC ’10. Sierre,

Switzerland: Association for Computing Machinery, 2010, pp. 2198–2202. ISBN:

9781605586397. DOI: 10.1145/1774088.1774551. URL: https://doi.org/

10.1145/1774088.1774551.

[23] Wat Wongtanuwat and Twittie Senivongse. “Detection of Violation of MVVM

Design Pattern in Objective-C Programs”. In: Proceedings of the 8th International

Conference on Computer and Communications Management. ICCCM ’20.

Singapore, Singapore: Association for Computing Machinery, 2020, pp. 54–58.

ISBN: 9781450387668. DOI: 10.1145/3411174.3411193. URL: https://doi.

org/10.1145/3411174.3411193.

[24] M. Aljamea and Mohammad Alkandari. “MMVMi: A validation model for MVC

and MVVM design patterns in iOS applications”. In: IAENG International Journal

of Computer Science 45 (Aug. 2018), pp. 377–389.

[25] Mohammad Hasan. “Finding the design pattern from the source code for develop-

ing reusable object oriented software”. In: 2009 Second International Conference

on the Applications of Digital Information and Web Technologies. Aug. 2009,

pp. 157–162. DOI: 10.1109/ICADIWT.2009.5273947.

[26] Santonu Sarkar, Girish Maskeri Rama, and Shubha R. “A Method for Detecting

and Measuring Architectural Layering Violations in Source Code”. In: 2006 13th

Asia Pacific Software Engineering Conference (APSEC’06). Dec. 2006, pp. 165–

172. DOI: 10.1109/APSEC.2006.7.

[27] Yuanfang Cai, Daniel Iannuzzi, and Sunny Wong. “Leveraging design structure

matrices in software design education”. In: 2011 24th IEEE-CS Conference on

Software Engineering Education and Training (CSEE&T). May 2011, pp. 179–

188. DOI: 10.1109/CSEET.2011.5876085.

[28] Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modularity. The

MIT Press, Mar. 2000. ISBN: 9780262267649. DOI: 10.7551/mitpress/2366.

001.0001. URL: https://doi.org/10.7551/mitpress/2366.001.0001.

70

https://is.muni.cz/th/f6oc3/masterThesis.pdf
https://is.muni.cz/th/f6oc3/masterThesis.pdf
https://doi.org/10.1145/1774088.1774551
https://doi.org/10.1145/1774088.1774551
https://doi.org/10.1145/1774088.1774551
https://doi.org/10.1145/3411174.3411193
https://doi.org/10.1145/3411174.3411193
https://doi.org/10.1145/3411174.3411193
https://doi.org/10.1109/ICADIWT.2009.5273947
https://doi.org/10.1109/APSEC.2006.7
https://doi.org/10.1109/CSEET.2011.5876085
https://doi.org/10.7551/mitpress/2366.001.0001
https://doi.org/10.7551/mitpress/2366.001.0001
https://doi.org/10.7551/mitpress/2366.001.0001

BIBLIOGRAPHY

[29] Sunny Wong et al. “Design Rule Hierarchies and Parallelism in Software

Development Tasks”. In: 2009 IEEE/ACM International Conference on Automated

Software Engineering. Nov. 2009, pp. 197–208. DOI: 10.1109/ASE.2009.53.

[30] Jon M. Kleinberg. “Authoritative sources in a hyperlinked environment”. In: J.

ACM 46.5 (Sept. 1999), pp. 604–632. ISSN: 0004-5411. DOI: 10.1145/324133.

324140. URL: https://doi.org/10.1145/324133.324140.

[31] Eleni Constantinou, George Kakarontzas, and Ioannis Stamelos. “Towards Open

Source Software System Architecture Recovery Using Design Metrics”. In: 2011

15th Panhellenic Conference on Informatics. Sept. 2011, pp. 166–170. DOI: 10.

1109/PCI.2011.36.

[32] S.R. Chidamber and C.F. Kemerer. “A metrics suite for object oriented design”. In:

IEEE Transactions on Software Engineering 20.6 (June 1994), pp. 476–493. ISSN:

1939-3520. DOI: 10.1109/32.295895.

[33] Dragoş Dobrean and Laura Dioşan. “Pathways for statically mining the Model-

View-Controller software architecture on mobile applications”. In: Soft Computing

26.19 (Oct. 2022), pp. 10493–10511. ISSN: 1433-7479. DOI: 10.1007/s00500-

022-06908-0. URL: https://doi.org/10.1007/s00500-022-06908-0.

[34] Dragoş Dobrean and Laura Dioşan. “A Hybrid Approach to MVC Architectural

Layers Analysis”. In: Proceedings of the 16th International Conference on

Evaluation of Novel Approaches to Software Engineering - ENASE. INSTICC.

SciTePress, 2021, pp. 36–46. ISBN: 978-989-758-508-1. DOI: 10 . 5220 /

0010326700360046.

[35] Dragoş Dobrean and Laura Dioşan. “Validating HyDe: Intelligent Method for

Inferring Software Architectures from Mobile Codebase”. In: Evaluation of Novel

Approaches to Software Engineering. Ed. by Raian Ali, Hermann Kaindl, and

Leszek A. Maciaszek. Cham: Springer International Publishing, 2022, pp. 3–28.

ISBN: 978-3-030-96648-5.

[36] Dragoş Dobrean and Laura Dioşan. Intelligent Methods for Inferring Software

Architectures from Mobile Applications Codebases. https://teze.doctorat.

ubbcluj.ro/doctorat/teza/fisier/6683. Accessed: 2024.05.02.

71

https://doi.org/10.1109/ASE.2009.53
https://doi.org/10.1145/324133.324140
https://doi.org/10.1145/324133.324140
https://doi.org/10.1145/324133.324140
https://doi.org/10.1109/PCI.2011.36
https://doi.org/10.1109/PCI.2011.36
https://doi.org/10.1109/32.295895
https://doi.org/10.1007/s00500-022-06908-0
https://doi.org/10.1007/s00500-022-06908-0
https://doi.org/10.1007/s00500-022-06908-0
https://doi.org/10.5220/0010326700360046
https://doi.org/10.5220/0010326700360046
https://teze.doctorat.ubbcluj.ro/doctorat/teza/fisier/6683
https://teze.doctorat.ubbcluj.ro/doctorat/teza/fisier/6683

BIBLIOGRAPHY

[37] Microsoft. SourceProductionContext.ReportDiagnostic(Diagnostic) Method.

https : / / learn . microsoft . com / en - us / dotnet / api / microsoft .

codeanalysis . sourceproductioncontext . reportdiagnostic ? view =

roslyn-dotnet-4.7.0. Accessed: 2024.05.02.

[38] Microsoft. IEqualityComparer<T> Interface. https://learn.microsoft.com/

en-us/dotnet/api/system.collections.generic.iequalitycomparer-

1?view=net-8.0. Accessed: 2024.05.02.

[39] Microsoft. CompilationStartAnalysisContext.RegisterCompilationEndAction

Method. https://learn.microsoft.com/en-us/dotnet/api/microsoft.

codeanalysis . diagnostics . compilationstartanalysiscontext .

registercompilationendaction?view=roslyn-dotnet-4.7.0. Accessed:

2024.05.02.

[40] Microsoft. CSharpSyntaxWalker Class. https://learn.microsoft.com/en-

us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker?

view=roslyn-dotnet-4.7.0. Accessed: 2024.05.02.

[41] Tibor Ásványi. Algorithms and Data Structures II. Lecture Notes: Elementary

graph algorithms. http : / / aszt . inf . elte . hu / ~asvanyi / ds / AlgDs2 /

AlgDs2graphs1.pdf. Accessed: 2024.05.02.

[42] Gonzalo Navarro. “A guided tour to approximate string matching”. In: ACM

Comput. Surv. 33.1 (Mar. 2001), pp. 31–88. ISSN: 0360-0300. DOI: 10.1145/

375360.375365. URL: https://doi.org/10.1145/375360.375365.

[43] Microsoft. Choose diagnostic IDs. https : / / learn . microsoft . com / en -

us/dotnet/csharp/roslyn- sdk/choosing- diagnostic- ids. Accessed:

2024.05.02.

[44] Sonar. S1104 - Fields should not have public accessibility. https : / /

sonarsource . github . io / rspec / # / rspec / S1104 / csharp. Accessed:

2024.05.02.

[45] Microsoft. Strings and string literals. https://learn.microsoft.com/en-

us/dotnet/csharp/programming-guide/strings. Accessed: 2024.05.02.

[46] Microsoft. Records (C# reference). https://learn.microsoft.com/en-us/

dotnet/csharp/language-reference/builtin-types/record. Accessed:

2024.05.02.

72

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.sourceproductioncontext.reportdiagnostic?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.sourceproductioncontext.reportdiagnostic?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.sourceproductioncontext.reportdiagnostic?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.diagnostics.compilationstartanalysiscontext.registercompilationendaction?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.diagnostics.compilationstartanalysiscontext.registercompilationendaction?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.diagnostics.compilationstartanalysiscontext.registercompilationendaction?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker?view=roslyn-dotnet-4.7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker?view=roslyn-dotnet-4.7.0
http://aszt.inf.elte.hu/~asvanyi/ds/AlgDs2/AlgDs2graphs1.pdf
http://aszt.inf.elte.hu/~asvanyi/ds/AlgDs2/AlgDs2graphs1.pdf
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/choosing-diagnostic-ids
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/choosing-diagnostic-ids
https://sonarsource.github.io/rspec/#/rspec/S1104/csharp
https://sonarsource.github.io/rspec/#/rspec/S1104/csharp
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/strings
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record

BIBLIOGRAPHY

[47] Microsoft. Value types (C# reference). https://learn.microsoft.com/en-

us/dotnet/csharp/language-reference/builtin-types/value-types.

Accessed: 2024.05.02.

73

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-types

List of Figures

2.1 Model-View (MV) architectural layers and the flow of data between them. 5

2.2 Model-View-ViewModel (MVV) architectural layers and the flow of data

between them. 6

3.1 Activity diagram of the architectural analysis workflow from the perspec-

tive of a single analyzer. Actions are grouped into data extraction and

diagnostic report phases. 23

3.2 Class diagram of knowledge-related interfaces and

KnowledgeHolderBase abstract class. 25

3.3 Class diagram of TypeHolder class. 25

3.4 Class diagram of TypeCollection class. 27

3.5 Class diagram of an imaginary/abstract Sudoku game. 27

3.6 Simplified representation of the built tree made from TypeCollection and

TypeHolder objects. Instances of TypeCollection are colored blue, while

instances of TypeHolder are colored yellow. 28

3.7 Class diagram of the architectural rulesets. 29

3.8 Class diagram of BaseArchitecturalAnalyzer abstract class and related

types. 31

3.9 Activity diagram of the layer identification process of types. Actions col-

ored green are detailed on Figure 3.10 and Figure 3.11. 36

3.10 Activity diagram of the process of assigning layers to types based on pri-

mary knowledges. 37

3.11 Activity diagram of the process of distributing layers along the edges of

the type graph. 37

3.12 Class diagram of IKnowledge related types. 38

3.13 Heuristic interfaces and the relationships between them. 39

3.14 Class diagram of analyzer classes. 48

74

LIST OF FIGURES

4.1 Distribution of clusterization errors in submissions. 55

4.2 Diagnostics with the number of reported cases. 55

4.3 Diagnostics with the number of occurrences in solutions and source files. . 57

4.4 Diagnostics with the number of expected reported cases. 58

75

	Introduction
	Topic

	Background
	Design principles
	Separation of concerns
	Encapsulation

	Architectures
	Monolithic architecture
	Model-View (MV) architecture
	Model-View-ViewModel (MVVM) architecture

	Structure of the related course
	Overview of student submissions

	.NET Compiler Platform SDK
	Task Management System (TMS)
	Roslynator
	Roslyn(ator) analysis workflow

	Need for a new workflow
	Related work
	Goals
	Research questions

	Methods
	Proposed tool
	Requirements
	Configuration

	Architectural analysis workflow
	Data extraction phase
	Diagnostic report phase

	Analysis model
	Knowledge-based approach
	TypeHolder
	TypeCollection
	Example for TypeCollection
	Equality comparers
	Architectural rulesets

	Abstract base analyzers
	BaseArchitecturalAnalyzer
	DependencyAnalyzer
	LayerAnalyzer

	Discovering dependencies
	Layer identification of types
	Proposed clustering workflow
	Related knowledges
	Heuristics
	Example for layer identification

	Defined rules
	Reported diagnostics
	ARCH1000 - Layer cannot be determined
	ARCH1001 - Inconsistency during layer identification
	ARCH1002 - Missing required layer
	ARCH1003 - Invalid dependency between layers
	ARCH1004 - Method call between unrelated layers
	ARCH1005 - Events should be handled in appropriate layers
	ARCH1006 - Representation leak
	ARCH1007 - Possible representation leak
	ARCH1008 - Class depends on concretion
	ARCH1009 - Don't define event handlers in xaml.cs files

	Proposed analyzers
	InconsistenciesDuringLayerIdentificationAnalyzer
	LayerCannotBeDeterminedAnalyzer
	MissingRequiredLayerAnalyzer
	InvalidDependencyBetweenLayersAnalyzer
	MethodCallBetweenUnrelatedLayersAnalyzer
	EventsShouldBeHandledInAppropriateLayersAnalyzer
	LeakedRepresentationAnalyzer
	ClassDependsOnConcretionAnalyzer
	DontDefineEventHandlersInXamlCsFilesAnalyzer

	Integration with evaluator system

	Results and validation
	Evaluating the clustering method
	Evaluating student submissions
	Comparison

	Addressing the research questions

	Conclusion and discussion
	Future work

	Acknowledgements
	Tool configuration
	Bibliography
	List of Figures

